Citation: | CAI Yuanqiang, YE Xiaoqian, SHI Li. Radial filtration model for prefabricated vertical drain treatment of slurry considering Poisson's effects[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 243-254. DOI: 10.11779/CJGE20231124 |
[1] |
CHU J, BO M W, CHOA V. Improvement of ultra-soft soil using prefabricated vertical drains[J]. Geotextiles and Geomembranes, 2006, 24(6): 339-348. doi: 10.1016/j.geotexmem.2006.04.004
|
[2] |
CAI Y Q, QIAO H H, WANG J, et al. Experimental tests on effect of deformed prefabricated vertical drains in dredged soil on consolidation via vacuum preloading[J]. Engineering Geology, 2017, 222: 10-19. doi: 10.1016/j.enggeo.2017.03.020
|
[3] |
鲍树峰, 娄炎, 董志良, 等. 新近吹填淤泥地基真空固结失效原因分析及对策[J]. 岩土工程学报, 2014, 36(7): 1350-1359. doi: 10.11779/CJGE201407020
BAO Shufeng, LOU Yan, DONG Zhiliang, et al. Causes and countermeasures for vacuum consolidation failure of newly-dredged mud foundation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1350-1359. (in Chinese) doi: 10.11779/CJGE201407020
|
[4] |
蔡袁强. 吹填淤泥真空预压固结机理与排水体防淤堵处理技术[J]. 岩土工程学报, 2021, 43(2): 201-225. doi: 10.11779/CJGE202102001
CAI Yuanqiang. Consolidation mechanism of vacuum preloading for dredged slurry and anti-clogging method for drains[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 201-225. (in Chinese) doi: 10.11779/CJGE202102001
|
[5] |
SUN H L, HE Z L, GENG X Y, et al. Formation mechanism of clogging of dredge slurry under vacuum preloading by using digital image technology. Canadian Geotechnical Journal, 2021, 99: 1-7.
|
[6] |
CHI T E. Introduction to cake filtration analyses, experiments, and applications[M]. Amsterdam: Elsevier, 2006.
|
[7] |
STAMATAKIS K, CHI T E. Cake formation and growth in cake filtration[J]. Chemical Engineering Science, 1991, 46(8): 1917-1933. doi: 10.1016/0009-2509(91)80153-P
|
[8] |
谢康和, 曾国熙. 等应变条件下的砂井地基固结解析理论[J]. 岩土工程学报, 1989, 11(2): 3-17. doi: 10.3321/j.issn:1000-4548.1989.02.002
XIE Kanghe, ZENG Guoxi. Consolidation theories for drain wells under equal strain condition[J]. Chinese Journal of Geotechnical Engineering, 1989, 11(2): 3-17. (in Chinese) doi: 10.3321/j.issn:1000-4548.1989.02.002
|
[9] |
江辉煌, 赵有明, 刘国楠, 等. 砂井地基的大变形固结[J]. 岩土工程学报, 2011, 33(2): 302-308. http://cge.nhri.cn/article/id/13919
JIANG Huihuang, ZHAO Youming, LIU Guonan, et al. Large strain consolidation of soft ground with vertical drains[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 302-308. (in Chinese) http://cge.nhri.cn/article/id/13919
|
[10] |
曹玉鹏, 孙宗军, 丁建文, 等. 高含水率疏浚泥轴对称大应变固结模型[J]. 岩土工程学报, 2016, 38(10): 1904-1910. doi: 10.11779/CJGE201610021
CAO Yupeng, SUN Zongjun, DING Jianwen, et al. Axisymmetric large-strain consolidation model for dredged clay with high water content[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1904-1910. (in Chinese) doi: 10.11779/CJGE201610021
|
[11] |
黄朝煊. 吹填土地基非线性大应变固结计算研究[J]. 岩石力学与工程学报, 2020, 39(增刊2): 3595-3606.
HUANG Chaoxuan. Research on nonlinear large strain consolidation of dredger fill[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S2): 3595-3606. (in Chinese)
|
[12] |
李传勋, 谢康和. 考虑非达西渗流和变荷载影响的软土大变形固结分析[J]. 岩土工程学报, 2015, 37(6): 1002-1009. doi: 10.11779/CJGE201506005
LI Chuanxun, XIE Kanghe. Large-strain consolidation of soft clay with non-Darcian flow by considering time-dependent load[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1002-1009. (in Chinese) doi: 10.11779/CJGE201506005
|
[13] |
洪振舜. 吹填土的一维大变形固结计算模型[J]. 河海大学学报, 1987, 15(6): 27-36. doi: 10.3321/j.issn:1000-1980.1987.06.005
HONG Zhenshun. One- dimensional mathematical model for large-strain consolidation of dredged-fill soil[J]. Journal of Hohai University (Natural Sciences), 1987, 15(6): 27-36. (in Chinese) doi: 10.3321/j.issn:1000-1980.1987.06.005
|
[14] |
周亚东, 王保田, 邓安. 分段线性电渗-堆载耦合固结模型[J]. 岩土工程学报, 2013, 35(12): 2311-2316. http://cge.nhri.cn/article/id/15612
ZHOU Yadong, WANG Baotian, DENG An. Piecewise-linear model for electro-osmosis-surcharge preloading coupled consolidation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2311-2316. (in Chinese) http://cge.nhri.cn/article/id/15612
|
[15] |
WANG P, HAN Y B, WANG J, et al. Deformation characteristics of soil between prefabricated vertical drains under vacuum preloading[J]. Geotextiles and Geomembranes, 2019, 47(6): 798-802. doi: 10.1016/j.geotexmem.2019.103493
|
[16] |
ZHOU Y, CHAI J C. Equivalent 'smear' effect due to non-uniform consolidation surrounding a PVD[J]. Géotechnique, 2017, 67(5): 410-419. doi: 10.1680/jgeot.16.P.087
|
[17] |
INDRARATNA B, RUJIKIATKAMJORN C, SATHANANTHAN I. Radial consolidation of clay using compressibility indices and varying horizontal permeability[J]. Canadian Geotechnical Journal, 2005, 42(5): 1330-1341. doi: 10.1139/t05-052
|
[18] |
卢萌盟, 白垚, 杨康. 考虑排水板淤堵时空变化的多元复合地基固结性状研究[J]. 岩土工程学报, 2023, 45(8): 1564-1573. doi: 10.11779/CJGE20220590
LU Mengmeng, BAI Yao, YANG Kang. Consolidation behaviors of multi-reinforcement composite ground considering time- and depth-dependent clogging effects of prefabricated vertical drains[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1564-1573. (in Chinese) doi: 10.11779/CJGE20220590
|
[19] |
STICKLAND A D, WHITE L R, SCALES P J. Models of rotary vacuum drum and disc filters for flocculated suspensions[J]. AIChE Journal, 2011, 57(4): 951-961. doi: 10.1002/aic.12310
|
[20] |
SHI L, YIN X, YE X Q, et al. Radial filtration model of clogging column for prefabricated vertical drain treatment of slurry[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2023, 149(1): 04022118. doi: 10.1061/(ASCE)GT.1943-5606.0002925
|
[21] |
KU T, MAYNE P W. Evaluating the in situ lateral stress coefficient (K0) of soils via paired shear wave velocity modes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(5): 775-787. doi: 10.1061/(ASCE)GT.1943-5606.0000756
|
[22] |
雷国辉, 许波, 张旭东. 堆载预压径竖向固结等体积应变解答[J]. 岩土工程学报, 2013, 35(1): 76-84. http://cge.nhri.cn/article/id/14920
LEI Guohui, XU Bo, ZHANG Xudong. Equal volumetric strain solutions for radial and vertical consolidation with vertical drains under surcharge preloading[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 76-84. (in Chinese) http://cge.nhri.cn/article/id/14920
|
[23] |
SHI L, JIANG J W, WANG Q Q, et al. Numerical study on movements of soil particles forming clogging layer during vacuum preloading of dredged slurry[J]. Granular Matter, 2021, 23(4): 92. doi: 10.1007/s10035-021-01151-0
|
[24] |
TILLER F M, KWON J H. Role of porosity in filtration: XIII. Behavior of highly compactible cakes[J]. AIChE Journal, 1998, 44(10): 2159-2167. doi: 10.1002/aic.690441005
|
[25] |
GENG X, YU H S. A large-strain radial consolidation theory for soft clays improved by vertical drains[J]. Géotechnique, 2017, 67(11): 1020-1028. doi: 10.1680/jgeot.15.T.013
|
[26] |
JAVIERRE E, VUIK C, VERMOLEN F J, et al. A comparison of numerical models for one-dimensional Stefan problems[J]. Journal of Computational and Applied Mathematics, 2006, 192(2): 445-459. doi: 10.1016/j.cam.2005.04.062
|
[27] |
SHI L, YIN X, SUN H L, et al. A new approach for determining compressibility and permeability characteristics of dredged slurries with high water content[J]. Canadian Geotechnical Journal, 2022, 59(6): 965-977. doi: 10.1139/cgj-2020-0676
|
[1] | Green, Efficient, and Safe Extraction Methods of methane-hydrate in the Qiongdongnan seabed, China[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20231269 |
[2] | Coupling analysis on mechanical properties of near-well interface of methane hydrate bearing sediments under depressurization exploitation[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20231245 |
[3] | KONG Desen, ZHAO Mingkai, SHI Jian, TENG Sen. A model for predicting gas-water relative permeability of rock media based on fractal dimension characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1421-1429. DOI: 10.11779/CJGE20220463 |
[4] | CHENG Xian-zhen, CHEN Lian-jun, LUAN Heng-jie, WHANG Chun-guang, JIANG Yu-jing. Influences of softening behaviour of coal on evolution of its permeability by considering matrix-fracture interactions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1890-1898. DOI: 10.11779/CJGE202210015 |
[5] | WANG Gang, XIAO Zhi-yong, WANG Chang-sheng, JIANG Yu-jing, YU Jun-hong. Gas transport in coal seams based on non-equilibrium state[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1512-1520. DOI: 10.11779/CJGE202208016 |
[6] | XIAO Zhi-yong, WANG Chang-sheng, WANG Gang, JIANG Yu-jing, YU Jun-hong. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209-2219. DOI: 10.11779/CJGE202112007 |
[7] | QI Xian-yin, WANG Wei. Anisotropic permeability model for coal containing methane based on anisotropic structure ratio[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1030-1037. DOI: 10.11779/CJGE201706008 |
[8] | JIANG Ming-jing, ZHU Fang-yuan, SHEN Zhi-fu. Influence of back pressure on macro-mechanical properties of methane hydrate soils by DEM analyses[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 219-226. |
[9] | YANG Xinle, ZHANG Yongli, LI Chengquan, LI Weikang. Experimental study on desorption and seepage rules of coal-bed gas considering temperature conditions[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1811-1814. |
[10] | WANG Lianguo, MIAO Xiexing, WANG Xuezhi, LI Qingfeng. Analysis on damaged width of coal pillar in strip extraction[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 767-769. |