• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Yingli, REN Honglei, GUO Wanli. Bimodal strength criterion and constitutive model for cemented sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 516-524. DOI: 10.11779/CJGE20231104
Citation: WU Yingli, REN Honglei, GUO Wanli. Bimodal strength criterion and constitutive model for cemented sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 516-524. DOI: 10.11779/CJGE20231104

Bimodal strength criterion and constitutive model for cemented sand and gravel

More Information
  • Received Date: November 14, 2023
  • Available Online: August 19, 2024
  • In order to explore the intricate mechanical properties of the cemented sand and gravel (CSG), large-scale triaxial shear tests are conducted on the specimens with varying confining pressures and gel contents. A bimodal shear strength criterion and a double-yield surface constitutive model applicable to the CSG are established. The main conclusions are as follows: (1) The CSG exhibits a certain level of cohesive strength and structural integrity, demonstrating notable mechanical characteristics such as softening and pronounced shear dilatancy at the macroscopic scale. (2) The shear strength criterion, based on the binary medium theory, is developed to describe the evolution of strength in the CSG under varying gel contents. (3) The shear strength criterion is appropriately transformed into the shear yield surface within the constitutive model, and by considering the tensile resistance of materials a volumetric yield surface is established based on the modified Cam-clay model. Additionally, the constitutive model emphasizes to describe the strain softening and strong dilatancy of the CSG. (4) The stiffness matrix of the constitutive model is derived for the general stress states, and its excellent fitting with the triaxial shear tests on the CSG is demonstrated. The findings of this study can provide better theoretical guidance for stress-deformation calculations in CSG dams.
  • [1]
    贾金生, 刘宁, 郑璀莹, 等. 胶结颗粒料坝研究进展与工程应用[J]. 水利学报, 2016, 47(3): 315-323.

    JIA Jinsheng, LIU Ning, ZHENG Cuiying, et al. Studies on cemented material dams and its application[J]. Journal of Hydraulic Engineering, 2016, 47(3): 315-323. (in Chinese)
    [2]
    蔡新, 杨杰, 郭兴文. 胶凝砂砾石坝研究综述[J]. 河海大学学报(自然科学版), 2015, 43(5): 431-441.

    CAI Xin, YANG Jie, GUO Xingwen. Review of cement sand and gravel dams[J]. Journal of Hohai University (Natural Sciences), 2015, 43(5): 431-441. (in Chinese)
    [3]
    傅华, 陈生水, 韩华强, 等. 胶凝砂砾石料静、动力三轴剪切试验研究[J]. 岩土工程学报, 2015, 37(2): 357-362. doi: 10.11779/CJGE201502021

    FU Hua, CHEN Shengshui, HAN Huaqiang, et al. Experimental study on static and dynamic properties of cemented sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 357-362. (in Chinese) doi: 10.11779/CJGE201502021
    [4]
    HAERI S M, HOSSEINI S M, TOLL D G, et al. The behaviour of an artificially cemented sandy gravel[J]. Geotechnical & Geological Engineering, 2005, 23(5): 537-560.
    [5]
    沈珠江. 岩土破损力学: 理想脆弹塑性模型[J]. 岩土工程学报, 2003, 25(3): 253-257. http://cge.nhri.cn/article/id/11186

    SHEN Zhujiang. Breakage mechanics for geological materials: an ideal brittle-elasto-plastic model[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 253-257. (in Chinese) http://cge.nhri.cn/article/id/11186
    [6]
    张革, 刘恩龙. 基于CT动态扫描的冻土细观二元介质本构模型[J]. 岩土工程学报, 2023, 45(9): 1888-1896. doi: 10.11779/CJGE20220629

    ZHANG Ge, LIU Enlong. Binary-medium constitutive model for frozen soils based on CT dynamic scanning[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1888-1896. (in Chinese) doi: 10.11779/CJGE20220629
    [7]
    邓刚, 沈珠江. 结构性黏土的二元介质渗流模型[J]. 水利学报, 2005, 36(12): 1414-1419. doi: 10.3321/j.issn:0559-9350.2005.12.003

    DENG Gang, SHEN Zhujiang. Binary medium seepage model for structured clays[J]. Journal of Hydraulic Engineering, 2005, 36(12): 1414-1419. (in Chinese) doi: 10.3321/j.issn:0559-9350.2005.12.003
    [8]
    李杭州, 熊光东, 郭彤, 等. 考虑统一强度理论的黄土二元介质模型研究[J]. 岩土工程学报, 2021, 43(增刊1): 53-57. doi: 10.11779/CJGE2021S1010

    LI Hangzhou, XIONG Guangdong, GUO Tong, et al. Binary-medium model for loess considering unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 53-57. (in Chinese) doi: 10.11779/CJGE2021S1010
    [9]
    孙明权, 刘运红, 陈姣姣, 等. 胶凝砂砾石材料本构模型研究[J]. 华北水利水电学院学报, 2012, 33(5): 13-15, 20.

    SUN Mingquan, LIU Yunhong, CHEN Jiaojiao, et al. Study on constitutive model of cemented sand and gravel material[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2012, 33(5): 13-15, 20. (in Chinese)
    [10]
    蔡新, 杨杰, 郭兴文, 等. 胶凝砂砾石料弹塑性本构模型研究[J]. 岩土工程学报, 2016, 38(9): 1569-1577. doi: 10.11779/CJGE201609003

    CAI Xin, YANG Jie, GUO Xingwen, et al. Elastoplastic constitutive model for cement-sand-gravel material[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1569-1577. (in Chinese) doi: 10.11779/CJGE201609003
    [11]
    吴梦喜, 杜斌, 姚元成, 等. 筑坝硬填料三轴试验及本构模型研究[J]. 岩土力学, 2011, 32(8): 2241-2250.

    WU Mengxi, DU Bin, YAO Yuancheng, et al. Triaxial tests and a new constitutive model of hardfill material[J]. Rock and Soil Mechanics, 2011, 32(8): 2241-2250. (in Chinese)
    [12]
    魏匡民, 陈生水, 李国英, 等. 胶凝粗粒料的弹塑性模型与应用研究[J]. 岩土工程学报, 2019, 41(5): 797-805. doi: 10.11779/CJGE201905001

    WEI Kuangmin, CHEN Shengshui, LI Guoying, et al. Elastoplastic model for cemented coarse-grained materials and its application[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 797-805. (in Chinese) doi: 10.11779/CJGE201905001
    [13]
    刘恩龙, 沈珠江. 结构性土的强度准则[J]. 岩土工程学报, 2006, 28(10): 1248-1252. http://cge.nhri.cn/article/id/12194

    LIU Enlong, SHEN Zhujiang. Strength criterion for structured soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1248-1252. (in Chinese) http://cge.nhri.cn/article/id/12194
    [14]
    张德, 刘恩龙, 刘星炎, 等. 冻土二元介质模型探讨: 以-6℃冻结粉土为例[J]. 岩土工程学报, 2018, 40(1): 82-90. doi: 10.11779/CJGE201801007

    ZHANG De, LIU Enlong, LIU Xingyan, et al. Investigation on binary medium model taking frozen silt soils under -6℃ for example[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 82-90. (in Chinese) doi: 10.11779/CJGE201801007
    [15]
    WANG S, ZHONG Z L, FAN Y F, et al. Developing a unified nonlinear strength (UNS) criterion for geomaterials[J]. Arabian Journal of Geosciences, 2019, 12(6): 187.
    [16]
    YANG Y G, LAI Y M, LI J B. Laboratory investigation on the strength characteristic of frozen sand considering effect of confining pressure[J]. Cold Regions Science and Technology, 2010, 60(3): 245-250.
    [17]
    REN H L, CAI X, WU Y L, et al. A study of strength parameter evolution and a statistical damage constitutive model of cemented sand and gravel[J]. Materials, 2023, 16(2): 542.
    [18]
    张丙印, 贾延安, 张宗亮. 堆石体修正Rowe剪胀方程与南水模型[J]. 岩土工程学报, 2007, 29(10): 1443-1448. http://cge.nhri.cn/article/id/12626

    ZHANG Bingyin, JIA Yan'an, ZHANG Zongliang. Modified Rowe's dilatancy law of rockfill and Shen Zhujiang's double yield surfaces elastoplastic model[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1443-1448. (in Chinese) http://cge.nhri.cn/article/id/12626
  • Related Articles

    [1]LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228
    [2]JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022
    [3]XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
    [4]HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
    [5]ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021
    [6]HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019
    [7]LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895.
    [8]LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648.
    [9]Microcosmic mechanism of ion transport in charged clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1794-1799.
    [10]XI Yong, Hui, REN Jie. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return