Citation: | WU Yingli, REN Honglei, GUO Wanli. Bimodal strength criterion and constitutive model for cemented sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 516-524. DOI: 10.11779/CJGE20231104 |
[1] |
贾金生, 刘宁, 郑璀莹, 等. 胶结颗粒料坝研究进展与工程应用[J]. 水利学报, 2016, 47(3): 315-323.
JIA Jinsheng, LIU Ning, ZHENG Cuiying, et al. Studies on cemented material dams and its application[J]. Journal of Hydraulic Engineering, 2016, 47(3): 315-323. (in Chinese)
|
[2] |
蔡新, 杨杰, 郭兴文. 胶凝砂砾石坝研究综述[J]. 河海大学学报(自然科学版), 2015, 43(5): 431-441.
CAI Xin, YANG Jie, GUO Xingwen. Review of cement sand and gravel dams[J]. Journal of Hohai University (Natural Sciences), 2015, 43(5): 431-441. (in Chinese)
|
[3] |
傅华, 陈生水, 韩华强, 等. 胶凝砂砾石料静、动力三轴剪切试验研究[J]. 岩土工程学报, 2015, 37(2): 357-362. doi: 10.11779/CJGE201502021
FU Hua, CHEN Shengshui, HAN Huaqiang, et al. Experimental study on static and dynamic properties of cemented sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 357-362. (in Chinese) doi: 10.11779/CJGE201502021
|
[4] |
HAERI S M, HOSSEINI S M, TOLL D G, et al. The behaviour of an artificially cemented sandy gravel[J]. Geotechnical & Geological Engineering, 2005, 23(5): 537-560.
|
[5] |
沈珠江. 岩土破损力学: 理想脆弹塑性模型[J]. 岩土工程学报, 2003, 25(3): 253-257. http://cge.nhri.cn/article/id/11186
SHEN Zhujiang. Breakage mechanics for geological materials: an ideal brittle-elasto-plastic model[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 253-257. (in Chinese) http://cge.nhri.cn/article/id/11186
|
[6] |
张革, 刘恩龙. 基于CT动态扫描的冻土细观二元介质本构模型[J]. 岩土工程学报, 2023, 45(9): 1888-1896. doi: 10.11779/CJGE20220629
ZHANG Ge, LIU Enlong. Binary-medium constitutive model for frozen soils based on CT dynamic scanning[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1888-1896. (in Chinese) doi: 10.11779/CJGE20220629
|
[7] |
邓刚, 沈珠江. 结构性黏土的二元介质渗流模型[J]. 水利学报, 2005, 36(12): 1414-1419. doi: 10.3321/j.issn:0559-9350.2005.12.003
DENG Gang, SHEN Zhujiang. Binary medium seepage model for structured clays[J]. Journal of Hydraulic Engineering, 2005, 36(12): 1414-1419. (in Chinese) doi: 10.3321/j.issn:0559-9350.2005.12.003
|
[8] |
李杭州, 熊光东, 郭彤, 等. 考虑统一强度理论的黄土二元介质模型研究[J]. 岩土工程学报, 2021, 43(增刊1): 53-57. doi: 10.11779/CJGE2021S1010
LI Hangzhou, XIONG Guangdong, GUO Tong, et al. Binary-medium model for loess considering unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 53-57. (in Chinese) doi: 10.11779/CJGE2021S1010
|
[9] |
孙明权, 刘运红, 陈姣姣, 等. 胶凝砂砾石材料本构模型研究[J]. 华北水利水电学院学报, 2012, 33(5): 13-15, 20.
SUN Mingquan, LIU Yunhong, CHEN Jiaojiao, et al. Study on constitutive model of cemented sand and gravel material[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2012, 33(5): 13-15, 20. (in Chinese)
|
[10] |
蔡新, 杨杰, 郭兴文, 等. 胶凝砂砾石料弹塑性本构模型研究[J]. 岩土工程学报, 2016, 38(9): 1569-1577. doi: 10.11779/CJGE201609003
CAI Xin, YANG Jie, GUO Xingwen, et al. Elastoplastic constitutive model for cement-sand-gravel material[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1569-1577. (in Chinese) doi: 10.11779/CJGE201609003
|
[11] |
吴梦喜, 杜斌, 姚元成, 等. 筑坝硬填料三轴试验及本构模型研究[J]. 岩土力学, 2011, 32(8): 2241-2250.
WU Mengxi, DU Bin, YAO Yuancheng, et al. Triaxial tests and a new constitutive model of hardfill material[J]. Rock and Soil Mechanics, 2011, 32(8): 2241-2250. (in Chinese)
|
[12] |
魏匡民, 陈生水, 李国英, 等. 胶凝粗粒料的弹塑性模型与应用研究[J]. 岩土工程学报, 2019, 41(5): 797-805. doi: 10.11779/CJGE201905001
WEI Kuangmin, CHEN Shengshui, LI Guoying, et al. Elastoplastic model for cemented coarse-grained materials and its application[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 797-805. (in Chinese) doi: 10.11779/CJGE201905001
|
[13] |
刘恩龙, 沈珠江. 结构性土的强度准则[J]. 岩土工程学报, 2006, 28(10): 1248-1252. http://cge.nhri.cn/article/id/12194
LIU Enlong, SHEN Zhujiang. Strength criterion for structured soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1248-1252. (in Chinese) http://cge.nhri.cn/article/id/12194
|
[14] |
张德, 刘恩龙, 刘星炎, 等. 冻土二元介质模型探讨: 以-6℃冻结粉土为例[J]. 岩土工程学报, 2018, 40(1): 82-90. doi: 10.11779/CJGE201801007
ZHANG De, LIU Enlong, LIU Xingyan, et al. Investigation on binary medium model taking frozen silt soils under -6℃ for example[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 82-90. (in Chinese) doi: 10.11779/CJGE201801007
|
[15] |
WANG S, ZHONG Z L, FAN Y F, et al. Developing a unified nonlinear strength (UNS) criterion for geomaterials[J]. Arabian Journal of Geosciences, 2019, 12(6): 187.
|
[16] |
YANG Y G, LAI Y M, LI J B. Laboratory investigation on the strength characteristic of frozen sand considering effect of confining pressure[J]. Cold Regions Science and Technology, 2010, 60(3): 245-250.
|
[17] |
REN H L, CAI X, WU Y L, et al. A study of strength parameter evolution and a statistical damage constitutive model of cemented sand and gravel[J]. Materials, 2023, 16(2): 542.
|
[18] |
张丙印, 贾延安, 张宗亮. 堆石体修正Rowe剪胀方程与南水模型[J]. 岩土工程学报, 2007, 29(10): 1443-1448. http://cge.nhri.cn/article/id/12626
ZHANG Bingyin, JIA Yan'an, ZHANG Zongliang. Modified Rowe's dilatancy law of rockfill and Shen Zhujiang's double yield surfaces elastoplastic model[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1443-1448. (in Chinese) http://cge.nhri.cn/article/id/12626
|
[1] | LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228 |
[2] | JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022 |
[3] | XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012 |
[4] | HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013 |
[5] | ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021 |
[6] | HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019 |
[7] | LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895. |
[8] | LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648. |
[9] | Microcosmic mechanism of ion transport in charged clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1794-1799. |
[10] | XI Yong, Hui, REN Jie. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402. |