• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Wei, ZHANG Zitao, YU Guangming, ZHANG Xuedong, ZHANG Zechao, SONG Jianzheng, ZHANG Zheng. Small-displacement behavior of offshore wind power monopiles subjected to static lateral loading[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 337-345. DOI: 10.11779/CJGE20230957
Citation: WANG Wei, ZHANG Zitao, YU Guangming, ZHANG Xuedong, ZHANG Zechao, SONG Jianzheng, ZHANG Zheng. Small-displacement behavior of offshore wind power monopiles subjected to static lateral loading[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 337-345. DOI: 10.11779/CJGE20230957

Small-displacement behavior of offshore wind power monopiles subjected to static lateral loading

More Information
  • Received Date: September 20, 2023
  • Available Online: July 23, 2024
  • The centrifuge tests and numerical simulations are carried out to explore the small-displacement behavior of 9 m-diameter offshore wind power large-scale monopiles with various embedment depths. The results show that as the embedment depth increases, the rotation center gradually moves downward, and the nonlinear characteristics of lateral displacement and rotation angle distributions along piles are gradually enhanced. The difference among p-y curves of monopiles with various embedment depths gradually increases with depth. In terms of trend, the p-y curve changes from convex to concave with the increasing embedment depth. In terms of magnitude, the initial secant modulus at the same depth can differ by 4 times. It can be explained as follows: when the same lateral displacement occurs at the same depth, the monopiles with relatively smaller embedment depths show smaller influence zones of both radial and circumferential displacements in the surrounding soils, and then the soil strain is larger, which eventually contributes to a larger horizontal resistance on piles. The research results help to deepen the understanding of the load-transfer mechanisms of large-diameter monopiles, and to provide a theoretical basis for the optimization of associated design approaches.
  • [1]
    刘金昊, 张帆, 戴国亮. 基于静力触探的黏土中桩基p-y曲线研究[J]. 太阳能学报, 2023, 44(2): 172-180.

    LIU Jinhao, ZHANG Fan, DAI Guoliang. Research on p-y curve of pile foundation in clay based on cpt data[J]. Acta Energiae Solaris Sinica, 2023, 44(2): 172-180. (in Chinese)
    [2]
    王立忠, 洪义, 高洋洋, 等. 近海风电结构台风环境动力灾变与控制[J]. 力学学报, 2023, 55(3): 567-587.

    WANG Lizhong, HONG Yi, GAO Yangyang, et al. Dynamic catastrophe and control of offshore wind power structures in typhoon environment[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 567-587. (in Chinese)
    [3]
    王卫, 闫俊义, 刘建平. 基于海上风电试桩数据的大直径桩p-y模型研究[J]. 岩土工程学报, 2021, 43(6): 1131-1138. doi: 10.11779/CJGE202106017

    WANG Wei, YAN Junyi, LIU Jianping. Study on p-y models for large-diameter pile foundation based on in situ tests of offshore wind power[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1131-1138. (in Chinese) doi: 10.11779/CJGE202106017
    [4]
    胡中波, 翟恩地, 罗仑博, 等. 基于静载试验的海上风电钢管桩砂土p-y曲线研究[J]. 太阳能学报, 2019, 40(12): 3571-3577.

    HU Zhongbo, ZHAI Endi, LUO Lunbo, et al. Study on p-y curves of steel pipe piles for offshore wind farms in sand based on in situ tests[J]. Acta Energiae Solaris Sinica, 2019, 40(12): 3571-3577. (in Chinese)
    [5]
    WANG H, LEHANE B M, BRANSBY M F, et al. Field and numerical study of the lateral response of rigid piles in sand[J]. Acta Geotechnica, 2022, 17(12): 5573-5584. doi: 10.1007/s11440-022-01532-6
    [6]
    MCADAM R A, BYRNE B W, HOULSBY G T, et al. Monotonic laterally loaded pile testing in a dense marine sand at Dunkirk[J]. Géotechnique, 2020, 70(11): 986-998. doi: 10.1680/jgeot.18.PISA.004
    [7]
    CHOO Y W, KIM D. Experimental development of the p-y relationship for large-diameter offshore monopiles in sands: centrifuge tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(1): 04015058. doi: 10.1061/(ASCE)GT.1943-5606.0001373
    [8]
    朱斌, 熊根, 刘晋超, 等. 砂土中大直径单桩水平受荷离心模型试验[J]. 岩土工程学报, 2013, 35(10): 1807-1815. http://cge.nhri.cn/article/id/15299

    ZHU Bin, XIONG Gen, LIU Jinchao, et al. Centrifuge modelling of a large-diameter single pile under lateral loads in sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1807-1815. (in Chinese) http://cge.nhri.cn/article/id/15299
    [9]
    TRUONG P, LEHANE B M, ZANIA V, et al. Empirical approach based on centrifuge testing for cyclic deformations of laterally loaded piles in sand[J]. Géotechnique, 2019, 69(2): 133-145.
    [10]
    LI Z S, BLANC M, THOREL L. Effects of embedding depth and load eccentricity on lateral response of offshore monopiles in dense sand: a centrifuge study[J]. Géotechnique, 2023, 73(9): 811-825.
    [11]
    RICHARDS I A, BYRNE B W, HOULSBY G T. Monopile rotation under complex cyclic lateral loading in sand[J]. Géotechnique, 2020, 70(10): 916-930.
    [12]
    DNV-OS-J101. Offshore standard: Design of offshore wind turbine structures[S]. DNV-OS-J101, 2014.
    [13]
    海上风电场工程风电机组基础设计规范: NB/T 10105—2018[S]. 北京: 中国水利水电出版社, 2018.

    Code for Design of Wind Turbine Foundations of Offshore Wind Power Projects: NB/T 10105—2018[S]. Beijing: China Water & Power Press, 2018. (in Chinese)
    [14]
    American Petroleum Institute. Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design[S]. Washington D C: American Petroleum Institute Publishing Services, 2005.
    [15]
    TAK KIM B, KIM N K, JIN LEE W, et al. Experimental load–transfer curves of laterally loaded piles in nak-Dong river sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(4): 416-425.
    [16]
    朱斌, 朱瑞燕, 罗军, 等. 海洋高桩基础水平大变位性状模型试验研究[J]. 岩土工程学报, 2010, 32(4): 521-530. http://cge.nhri.cn/article/id/12426

    ZHU Bin, ZHU Ruiyan, LUO Jun, et al. Model tests on characteristics of ocean and offshore elevated piles with large lateral deflection[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4): 521-530. (in Chinese) http://cge.nhri.cn/article/id/12426
    [17]
    LI W C, ZHU B T, YANG M. Static response of monopile to lateral load in overconsolidated dense sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(7): 04017026.
    [18]
    ACHMUS M, ABDEL-RAHMAN K. Finite element modelling of horizontally loaded monopile foundations for offshore wind energy converters in Germany[M]//Frontiers in Offshore Geotechnics. Perth: Taylor & Francis, 2005
    [19]
    ZHANG Z, WANG W, ZHANG X, et al. An innovative experimental device for characterizing the responses of monopiles subjected to complex lateral loading[C]// Proceedings of the 8th International Symposium on Deformation Characteristics of Geomaterials. Porto, 2023.
    [20]
    WANG W, ZHANG Z T, ZHU Xiao Y, et al. A device for centrifuge tests on foundations of offshore wind turbines[J]. Engineering Mechanics, 2021, 38(4): 44-53
    [21]
    REESE L C, COX W R, KOOP F D. Analysis of Laterally Loaded Piles in Sand[C]// Offshore Technology Conference. Houston, 1974.
  • Related Articles

    [1]Green, Efficient, and Safe Extraction Methods of methane-hydrate in the Qiongdongnan seabed, China[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20231269
    [2]Coupling analysis on mechanical properties of near-well interface of methane hydrate bearing sediments under depressurization exploitation[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20231245
    [3]KONG Desen, ZHAO Mingkai, SHI Jian, TENG Sen. A model for predicting gas-water relative permeability of rock media based on fractal dimension characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1421-1429. DOI: 10.11779/CJGE20220463
    [4]CHENG Xian-zhen, CHEN Lian-jun, LUAN Heng-jie, WHANG Chun-guang, JIANG Yu-jing. Influences of softening behaviour of coal on evolution of its permeability by considering matrix-fracture interactions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1890-1898. DOI: 10.11779/CJGE202210015
    [5]WANG Gang, XIAO Zhi-yong, WANG Chang-sheng, JIANG Yu-jing, YU Jun-hong. Gas transport in coal seams based on non-equilibrium state[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1512-1520. DOI: 10.11779/CJGE202208016
    [6]XIAO Zhi-yong, WANG Chang-sheng, WANG Gang, JIANG Yu-jing, YU Jun-hong. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209-2219. DOI: 10.11779/CJGE202112007
    [7]QI Xian-yin, WANG Wei. Anisotropic permeability model for coal containing methane based on anisotropic structure ratio[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1030-1037. DOI: 10.11779/CJGE201706008
    [8]JIANG Ming-jing, ZHU Fang-yuan, SHEN Zhi-fu. Influence of back pressure on macro-mechanical properties of methane hydrate soils by DEM analyses[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 219-226.
    [9]YANG Xinle, ZHANG Yongli, LI Chengquan, LI Weikang. Experimental study on desorption and seepage rules of coal-bed gas considering temperature conditions[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1811-1814.
    [10]WANG Lianguo, MIAO Xiexing, WANG Xuezhi, LI Qingfeng. Analysis on damaged width of coal pillar in strip extraction[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 767-769.

Catalog

    Article views (197) PDF downloads (65) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return