• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
QIN Changbing, LI Yueyang, DAI Chenyu, SHI Yusha, ZHANG Wengang. Roof stability analysis of deeply-buried cavities based on nonlinear Baker criterion[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 296-304. DOI: 10.11779/CJGE20230662
Citation: QIN Changbing, LI Yueyang, DAI Chenyu, SHI Yusha, ZHANG Wengang. Roof stability analysis of deeply-buried cavities based on nonlinear Baker criterion[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 296-304. DOI: 10.11779/CJGE20230662

Roof stability analysis of deeply-buried cavities based on nonlinear Baker criterion

More Information
  • Received Date: July 05, 2023
  • Available Online: July 15, 2024
  • The dynamic roof stability analysis of deeply-buried cavities is investigated by using the upper bound limit analysis method adopting a more general nonlinear Baker criterion, in contrast to the Hoek-Brown and Mohr-Coulomb criteria which are mainly applicable to rock and soil, respectively. A curved failure mechanism for roof collapse is proposed in the realm of the Baker criterion. The vertical seismic loading is considered herein. The balance equation for work rate is then established after computing the external and internal rates of work. Based on the variational principle, the upper-bound formulation for roof collapse mechanism is derived with/without considerations of the vertical earthquake effects. Accordingly, the closed-form solutions for the failure surface, collapse height and width are explicitly obtained. At the same time, the ABAQUS modelling is used to verify the robustness and validity of closed-form solutions. The parametric studies are carried out to investigate the change laws of the roof collapse mechanism under different parameters. The results indicate that apart from rock/soil properties, the upward seismic force has a significant effect on the failure region above the cavity roof.
  • [1]
    CHEN W F. Limit Analysis and Soil Plasticity[M]. Amsterdam; New York: Elsevier Scientific Pub. Co, 1975.
    [2]
    MICHALOWSKI R L. Slope stability analysis: a kinematical approach[J]. Géotechnique, 1995, 45(2): 283-293. doi: 10.1680/geot.1995.45.2.283
    [3]
    赵炼恒, 李亮, 杨峰, 等. 加筋土坡动态稳定性拟静力分析[J]. 岩石力学与工程学报, 2009, 28(9): 1904-1917. doi: 10.3321/j.issn:1000-6915.2009.09.023

    ZHAO Lianheng, LI Liang, YANG Feng, et al. Dynamic stability pseudo-static analysis of reinforcement soil slopes[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9): 1904-1917. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.09.023
    [4]
    SLOAN S W. Geotechnical stability analysis[J]. Géotechnique, 2013, 63(7): 531-571. doi: 10.1680/geot.12.RL.001
    [5]
    孙志彬, 潘秋景, 杨小礼, 等. 非均质边坡上限分析的离散机构及应用[J]. 岩石力学与工程学报, 2017, 36(7): 1680-1688.

    SUN Zhibin, PAN Qiujing, YANG Xiaoli, et al. Discrete mechanism for upper bound analysis of nonhomogeneous slopes[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7): 1680-1688. (in Chinese)
    [6]
    QIN C B, CHIAN S C. Kinematic analysis of seismic slope stability with a discretisation technique and pseudo-dynamic approach: a new perspective[J]. Géotechnique, 2018, 68(6): 492-503. doi: 10.1680/jgeot.16.P.200
    [7]
    FRALDI M, GUARRACINO F. Limit analysis of collapse mechanisms in cavities and tunnels according to the Hoek–Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(4): 665-673. doi: 10.1016/j.ijrmms.2008.09.014
    [8]
    FRALDI M, GUARRACINO F. Analytical solutions for collapse mechanisms in tunnels with arbitrary cross sections[J]. International Journal of Solids and Structures, 2010, 47(2): 216-223. doi: 10.1016/j.ijsolstr.2009.09.028
    [9]
    FRALDI M, GUARRACINO F. Evaluation of impending collapse in circular tunnels by analytical and numerical approaches[J]. Tunnelling and Underground Space Technology, 2011, 26(4): 507-516. doi: 10.1016/j.tust.2011.03.003
    [10]
    YANG X L, QIN C B. Limit analysis of rectangular cavity subjected to seepage forces based on Hoek-Brown failure criterion[J]. Geomechanics and Engineering, 2014, 6(5): 503-515. doi: 10.12989/gae.2014.6.5.503
    [11]
    YANG X L, HUANG F. Three-dimensional failure mechanism of a rectangular cavity in a Hoek-Brown rock medium[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 61: 189-195. doi: 10.1016/j.ijrmms.2013.02.014
    [12]
    QIN C B, LI Y Y, YU J, et al. Closed-form solutions for collapse mechanisms of tunnel crown in saturated non-uniform rock surrounds[J]. Tunnelling and Underground Space Technology, 2022, 126: 104529. doi: 10.1016/j.tust.2022.104529
    [13]
    BAKER R. Nonlinear Mohr envelopes based on triaxial data[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(5): 498-506. doi: 10.1061/(ASCE)1090-0241(2004)130:5(498)
    [14]
    ZHANG D B, MA Z Y, YU B, et al. Upper bound solution of surrounding rock pressure of shallow tunnel under nonlinear failure criterion[J]. Journal of Central South University, 2019, 26(7): 1696-1705. doi: 10.1007/s11771-019-4126-3
    [15]
    刘智振. 非线性Baker破坏准则下地下硐室围岩压力上限解研究[D]. 湘潭: 湖南科技大学, 2017.

    LIU Zhizhen. Study on Upper Bound Solution of Surrounding Rock Pressure in Underground Cavity under Nonlinear Baker Failure Criterion[D]. Xiangtan: Hunan University of Science and Technology, 2017. (in Chinese)
    [16]
    HOEK E, BROWN E T. Empirical strength criterion for rock masses[J]. Journal of the Geotechnical Engineering Division, 1980, 106(9): 1013-1035. doi: 10.1061/AJGEB6.0001029
    [17]
    HOEK E, CARRANZA-TORRES C, CORKUM B. Hoek-Brown failure criterion: 2002 edition[C]// Proceedings of the North American Rock Mechanics Symposium. Toronto, 2002.
    [18]
    XU J S, YANG X L. Seismic stability analysis and charts of a 3D rock slope in Hoek-Brown media[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 64-76. doi: 10.1016/j.ijrmms.2018.10.005
    [19]
    黄阜, 杨小礼, 赵炼恒, 等. 基于Hoek-Brown破坏准则的浅埋条形锚板抗拔力上限分析[J]. 岩土力学, 2012, 33(1): 179-184, 190. doi: 10.3969/j.issn.1000-7598.2012.01.028

    HUANG Fu, YANG Xiaoli, ZHAO Lianheng, et al. Upper bound solution of ultimate pullout capacity of strip plate anchor based on Hoek-Brown failure criterion[J]. Rock and Soil Mechanics, 2012, 33(1): 179-184, 190. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.01.028
    [20]
    JIANG J C, BAKER R, YAMAGAMI T. The effect of strength envelope nonlinearity on slope stability computations[J]. Canadian Geotechnical Journal, 2003, 40(2): 308-325. doi: 10.1139/t02-111
    [21]
    LIU Z Z, CAO P, LIN H, et al. Three-dimensional upper bound limit analysis of underground cavities using nonlinear Baker failure criterion[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(7): 1916-1927. doi: 10.1016/S1003-6326(20)65350-X
    [22]
    FRALDI M, CAVUOTO R, CUTOLO A, et al. Stability of tunnels according to depth and variability of rock mass parameters[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 119: 222-229. doi: 10.1016/j.ijrmms.2019.05.001
  • Related Articles

    [1]Green, Efficient, and Safe Extraction Methods of methane-hydrate in the Qiongdongnan seabed, China[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20231269
    [2]Coupling analysis on mechanical properties of near-well interface of methane hydrate bearing sediments under depressurization exploitation[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20231245
    [3]KONG Desen, ZHAO Mingkai, SHI Jian, TENG Sen. A model for predicting gas-water relative permeability of rock media based on fractal dimension characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1421-1429. DOI: 10.11779/CJGE20220463
    [4]CHENG Xian-zhen, CHEN Lian-jun, LUAN Heng-jie, WHANG Chun-guang, JIANG Yu-jing. Influences of softening behaviour of coal on evolution of its permeability by considering matrix-fracture interactions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1890-1898. DOI: 10.11779/CJGE202210015
    [5]WANG Gang, XIAO Zhi-yong, WANG Chang-sheng, JIANG Yu-jing, YU Jun-hong. Gas transport in coal seams based on non-equilibrium state[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1512-1520. DOI: 10.11779/CJGE202208016
    [6]XIAO Zhi-yong, WANG Chang-sheng, WANG Gang, JIANG Yu-jing, YU Jun-hong. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209-2219. DOI: 10.11779/CJGE202112007
    [7]QI Xian-yin, WANG Wei. Anisotropic permeability model for coal containing methane based on anisotropic structure ratio[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1030-1037. DOI: 10.11779/CJGE201706008
    [8]JIANG Ming-jing, ZHU Fang-yuan, SHEN Zhi-fu. Influence of back pressure on macro-mechanical properties of methane hydrate soils by DEM analyses[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 219-226.
    [9]YANG Xinle, ZHANG Yongli, LI Chengquan, LI Weikang. Experimental study on desorption and seepage rules of coal-bed gas considering temperature conditions[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1811-1814.
    [10]WANG Lianguo, MIAO Xiexing, WANG Xuezhi, LI Qingfeng. Analysis on damaged width of coal pillar in strip extraction[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 767-769.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return