• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Yuepeng, TANG Shibin, LIU Xiangjun, WANG Peifeng, GAO Yongwei, YANG Yun, LIANG Lixi. Molecular dynamics simulation of sodium montmorillonite hydration under complex buried conditions[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 599-607. DOI: 10.11779/CJGE20230443
Citation: WANG Yuepeng, TANG Shibin, LIU Xiangjun, WANG Peifeng, GAO Yongwei, YANG Yun, LIANG Lixi. Molecular dynamics simulation of sodium montmorillonite hydration under complex buried conditions[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 599-607. DOI: 10.11779/CJGE20230443

Molecular dynamics simulation of sodium montmorillonite hydration under complex buried conditions

More Information
  • Received Date: May 21, 2023
  • Available Online: September 28, 2024
  • The phenomenon of rock structure disintegration caused by the hydration of clay minerals is closely related to engineering safety problems such as slope landslide, tunnel collapse and borehole collapse. In order to reveal the hydration mechanism of sodium montmorillonite under deep and complex burial conditions, molecular dynamics simulations on the hydration process of sodium montmorillonite at different burial depths were carried out by using molecular simulation techniques, verify the hydration expansion characteristics of sodium montmorillonite, and realize the quantitative analysis of key physical and chemical parameters in the hydration process. The simulation results show that with the increase of interlayer water content, the crystal layer spacing rises in a step pattern and presents a stratification phenomenon. With the increase of burial depth and interlayer water content, the volume of sodium montmorillonite increases, while the density decreases correspondingly. The increase of interlayer water content promotes the increase of hydrogen bonds, and significantly increases the self-diffusion coefficients of water molecules and Na+ ions. The self-diffusion coefficients of water molecules and Na+ ions in deep buried complex conditions are significantly higher than those at normal temperature and pressure. With the increase of water molecular layer, the main peaks of Na-Ow, Na-Hw, Ow-Hw, Ow-Ow and Os-Hw showed a tendency to gradually weaken, and the peak values of these main peaks were different under different burial depths. Simultaneous, the degree of water polymerization first increased and then decreased, the coordination number, the polymerization degree, the ionic hydration number and hydration radius of Na+ ions decreased. With the increase of burial depth, the degree of water polymerization is little different, and the hydration characteristics of Na+ ions only decrease slightly. The research results can be used to guide the theoretical analysis and engineering practice such as oil drilling, coal seam mining, slope stability evaluation and tunnel excavation.
  • [1]
    赖小玲, 叶为民, 刘毅, 等. 高庙子膨润土膨胀力时效性试验研究[J]. 岩土工程学报, 2014, 36(3): 574-579. doi: 10.11779/CJGE201403022

    LAI Xiaoling, YE Weimin, LIU Yi, et al. Experimental investigation on ageing effects on swelling pressure of unsaturated GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 574-579. (in Chinese) doi: 10.11779/CJGE201403022
    [2]
    WANG Y P, LIU X J, LIANG L X, et al. Experimental study on the damage of organic-rich shale during water-shale interaction[J]. Journal of Natural Gas Science and Engineering, 2020, 74: 103103. doi: 10.1016/j.jngse.2019.103103
    [3]
    SUI W B, TIAN Y Y, YAO C H. Investigation of microscopic pore structure variations of shale due to hydration effects through SEM fixed-point observation experiments[J]. Petroleum Exploration and Development, 2018, 45(5): 955-962. doi: 10.1016/S1876-3804(18)30099-5
    [4]
    黄叶宁, 邓华锋, 李建林, 等. 水-岩作用下节理岩体剪切力学特性及本构模型[J]. 岩石力学与工程学报, 2023, 42(3): 545-557.

    HUANG Yening, DENG Huafeng, LI Jianlin, et al. Shear mechanical properties and constitutive model of jointed rock mass under water-rock interaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(3): 545-557. (in Chinese)
    [5]
    方沁华. 蒙脱石和高岭石的分子动力学模拟研究[D]. 北京: 北京化工大学, 2005.

    FANG Qinhua. Molecular Dynamics Simulation of Montmorillonite and Kaolinite[D]. Beijing: Beijing University of Chemical Technology, 2005. (in Chinese)
    [6]
    赵红华, 江舒棋, 葛源源, 等. 不同阳离子基蒙脱石吸附水分子的分子动力学模拟分析[J]. 中国科学: 技术科学, 2019, 49(6): 703-715.

    ZHAO Honghua, JIANG Shuqi, GE Yuanyuan, et al. Molecular dynamics simulation of water molecules adsorption by different cations based montmorillonite[J]. Scientia Sinica (Technologica), 2019, 49(6): 703-715. (in Chinese)
    [7]
    徐加放, 顾甜甜, 沈文丽, 等. 无机盐对蒙脱石弹性力学参数影响的分子模拟与实验研究[J]. 中国石油大学学报(自然科学版), 2016, 40(2): 83-90.

    XU Jiafang, GU Tiantian, SHEN Wenli, et al. Influence simulation of inorganic salts on montmorillonite elastic mechanical parameters and experimental study[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(2): 83-90. (in Chinese)
    [8]
    况联飞. 饱和蒙脱土高压力学特性基本机制多尺度研究[D]. 徐州: 中国矿业大学, 2013.

    KUANG Lianfei. Multi-scale Study on Basic Mechanism of Mechanical Properties of Saturated Montmorillonite under High Pressure[D]. Xuzhou: China University of Mining and Technology, 2013. (in Chinese)
    [9]
    CYGAN R T, GUGGENHEIM S, KOSTER VAN GROOS A F. Molecular models for the intercalation of methane hydrate complexes in montmorillonite clay[J]. The Journal of Physical Chemistry B, 2004, 108(39): 15141-15149. doi: 10.1021/jp037900x
    [10]
    罗亚飞. Na-蒙脱石表面水化抑制机理的分子模拟[D]. 成都: 西南石油大学, 2019.

    LUO Yafei. Molecular Simulation of Hydration Inhibition Mechanism of Na-Montmorillonite Surface[D]. Chengdu: Southwest Petroleum University, 2019. (in Chinese)
    [11]
    杨亚帆, 王建州, 商翔宇, 等. 高温下钙蒙脱石膨胀特性的分子动力学模拟[J]. 物理学报, 2022, 71(4): 48-59.

    YANG Yafan, WANG Jianzhou, SHANG Xiangyu, et al. Molecular dynamics simulation of swelling properties of Ca-montmorillonite at high temperatures[J]. Acta Physica Sinica, 2022, 71(4): 48-59. (in Chinese)
    [12]
    VIANI B E, LOW P F, ROTH C B. Direct measurement of the relation between interlayer force and interlayer distance in the swelling of montmorillonite[J]. Journal of Colloid and Interface Science, 1983, 96(1): 229-244. doi: 10.1016/0021-9797(83)90025-5
    [13]
    DE SIQUEIRA A, SKIPPER N, COVENEY P, et al. Computer simulation evidence for enthalpy driven dehydration of smectite clays at elevated pressures and temperatures[J]. Molecular Physics, 1997, 92(1): 713829279. http://www.onacademic.com/detail/journal_1000036709258210_d127.html
    [14]
    李小迪. 典型页岩抑制剂抑制蒙脱石水化机理的分子模拟[D]. 东营: 中国石油大学(华东), 2016.

    LI Xiaodi. Molecular Simulation of Mechanism of Typical Shale Inhibitors Inhibiting Montmorillonite Hydration[D]. Dongying: China University of Petroleum (Huadong), 2016. (in Chinese)
    [15]
    王进. 蒙脱石层间结构的分子力学和分子动力学模拟研究[D]. 太原: 太原理工大学, 2005.

    WANG Jin. Molecular Mechanics and Molecular Dynamics Simulation of Interlayer Structure of Montmorillonite[D]. Taiyuan: Taiyuan University of Technology, 2005. (in Chinese)
    [16]
    ZHENG Y, ZAOUI A. How water and counterions diffuse into the hydrated montmorillonite[J]. Solid State Ionics, 2011, 203(1): 80-85. http://www.onacademic.com/detail/journal_1000035085556010_b27a.html
    [17]
    CHANG F R C, SKIPPER N T, SPOSITO G. Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates[J]. Langmuir, 1995, 11(7): 2734-2741. doi: 10.1021/la00007a064
    [18]
    黄小娟, 徐加放, 丁廷稷, 等. 有机胺抑制蒙脱石水化机理的分子模拟[J]. 石油钻采工艺, 2017, 39(4): 442-448.

    HUANG Xiaojuan, XU Jiafang, DING Tingji, et al. Molecular simulation on the inhibition mechanism of organic amine to montmorillonite hydration[J]. Oil Drilling & Production Technology, 2017, 39(4): 442-448. (in Chinese)
  • Related Articles

    [1]LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228
    [2]JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022
    [3]XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
    [4]HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
    [5]ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021
    [6]HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019
    [7]LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895.
    [8]LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648.
    [9]Microcosmic mechanism of ion transport in charged clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1794-1799.
    [10]XI Yong, Hui, REN Jie. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402.

Catalog

    Article views (183) PDF downloads (32) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return