• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Qiang, BAI Chaoyu, PENG Jianbing, LU Quanzhong, LI Wenyang. Evolution of soil pressure of prefabricated utility tunnel crossing activeground fissures in confined site[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1615-1624. DOI: 10.11779/CJGE20221309
Citation: XU Qiang, BAI Chaoyu, PENG Jianbing, LU Quanzhong, LI Wenyang. Evolution of soil pressure of prefabricated utility tunnel crossing activeground fissures in confined site[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1615-1624. DOI: 10.11779/CJGE20221309

Evolution of soil pressure of prefabricated utility tunnel crossing activeground fissures in confined site

More Information
  • Received Date: October 23, 2022
  • Available Online: March 14, 2023
  • The underground utility tunnel is inevitably affected by ground fissures when crossing active ground fissures. The distribution of soil stress around the utility tunnel is studied through a large physical model test by monitoring the contact pressure between the soil and the structure around the utility tunnel. The monitoring positions are located at the bottom axis of the test box, bottom axis of the utility tunnel, bottom side line of the utility tunnel, side wall of the test box and top axis of the utility tunnel respectively. The results show that the cracks first appear near the preset ground fissure with a shear state, leading to tension state at the top face of soil. The effects of the deformation of the utility tunnel on soil stress are mainly concentrated at the end of the hanging wall and the position near the ground fissure. The stress state of the soil in hanging wall is relatively stable. However, the stress redistribution is mainly at the bottom of the utility tunnel, and the effects of the deformation of the utility tunnel on the surrounding soil decrease from the bottom axis to the sides gradually. The research results can be used for disaster prevention and foundation treatment of prefabricated utility tunnels in the areas with frequent ground fissure disasters.
  • [1]
    CANTO-PERELLO J, CURIEL-ESPARZA J, CALVO V. Criticality and threat analysis on utility tunnels for planning security policies of utilities in urban underground space[J]. Expert Systems With Applications, 2013, 40(11): 4707-4714. doi: 10.1016/j.eswa.2013.02.031
    [2]
    CHEN J, JIANG L Z, LI J, et al. Numerical simulation of shaking table test on utility tunnel under non-uniform earthquake excitation[J]. Tunnelling and Underground Space Technology, 2012, 30: 205-216. doi: 10.1016/j.tust.2012.02.023
    [3]
    孙书伟, 朱本珍, 马宁. 城市地下综合管廊开挖方法及设计参数分析[J]. 铁道工程学报, 2019, 36(3): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201903011.htm

    SUN Shuwei, ZHU Benzhen, MA Ning. Analysis of excavation method and design parameters for underground pipeline utility tunnel[J]. Journal of Railway Engineering Society, 2019, 36(3): 61-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201903011.htm
    [4]
    易伟建, 颜良, 彭真. 无腋角综合管廊结构足尺模型静载试验与有限元分析[J]. 湖南大学学报(自然科学版), 2019, 46(7): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201907001.htm

    YI Weijian, YAN Liang, PENG Zhen. Static load test and finite element analysis on full-scale model of utility tunnel structure without axillary angle[J]. Journal of Hunan University (Natural Sciences), 2019, 46(7): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201907001.htm
    [5]
    冯立, 丁选明, 王成龙, 等. 考虑接缝影响的地下综合管廊振动台模型试验[J]. 岩土力学, 2020, 41(4): 1295-1304. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202004021.htm

    FENG Li, DING Xuanming, WANG Chenglong, et al. Shaking table model test on seismic responses of utility tunnel with joint[J]. Rock and Soil Mechanics, 2020, 41(4): 1295-1304. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202004021.htm
    [6]
    彭建兵. 西安地裂缝灾害[M]. 北京: 科学出版社, 2012.

    PENG Jianbing. Ground Fissure Disaster in Xi'an[M]. Beijing: Science Press, 2012. (in Chinese)
    [7]
    卢全中, 彭建兵, 邓亚虹, 等. 北京北七家—高丽营地裂缝破坏特征及影响带宽度[J]. 工程勘察, 2014, 42(6): 5-11. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201406002.htm

    LU Quanzhong, PENG Jianbing, DENG Yahong, et al. Failure characteristics and influence width of Beiqijia-Gaoliying ground fissure in Beijing[J]. Geotechnical Investigation & Surveying, 2014, 42(6): 5-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201406002.htm
    [8]
    卢全中, 吴辉龙, 彭建兵, 等. 地裂缝带路基土的压缩特性及防治对策[J]. 中国公路学报, 2015, 28(7): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201507002.htm

    LU Quanzhong, WU Huilong, PENG Jianbing, et al. Compression characteristic and control measure of subgrade soil in ground fissure zone[J]. China Journal of Highway and Transport, 2015, 28(7): 10-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201507002.htm
    [9]
    西安地裂缝场地勘察与工程设计规程: DBJ 61-6-2006[S]. 西安: 2006.

    Code for Xi'an Ground Fracture Site Investigation and Engineering Design: DBJ 61-6-2006[S]. Xi'an: 2006. (in Chinese)
    [10]
    杨招, 黄强兵, 肖双全, 等. 地裂缝场地地铁隧道施工CRD工法优化研究[J]. 工程地质学报, 2021, 29(2): 516-525. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102021.htm

    YANG Zhao, HUANG Qiangbing, XIAO Shuangquan, et al. Study on optimization of crd construction method of metro tunnel through the ground fissure site[J]. Journal of Engineering Geology, 2021, 29(2): 516-525. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102021.htm
    [11]
    许晨, 袁立群, 门玉明, 等. 地铁振动作用下穿越地裂缝隧道-地层动力响应模型试验研究[J]. 工程地质学报, 2018, 26(5): 1360-1365. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201805031.htm

    XU Chen, YUAN Liqun, MEN Yuming, et al. Dynamic model test for response of tunnel-stratum crossing ground fissure under vibration of metro[J]. Journal of Engineering Geology, 2018, 26(5): 1360-1365. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201805031.htm
    [12]
    YAN Y F, HUANG Q B, XIE Y L, et al. Failure analysis of urban open-cut utility tunnel under ground fissures environment in Xi'an, China[J]. Engineering Failure Analysis, 2021, 127: 105529.
    [13]
    闫钰丰, 黄强兵, 杨学军, 等. 地下综合管廊穿越地裂缝变形与受力特征研究[J]. 工程地质学报, 2018, 26(5): 1203-1210. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201805011.htm

    YAN Yufeng, HUANG Qiangbing, YANG Xuejun, et al. Research on the deformation and force characteristics of underground utility tunnel crossing ground fissure[J]. Journal of Engineering Geology, 2018, 26(5): 1203-1210. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201805011.htm
    [14]
    胡志平, 张丹, 张亚国, 等. 地下综合管廊结构斜穿活动地裂缝的变形破坏机制室内模型试验研究[J]. 岩石力学与工程学报, 2019, 38(12): 2550-2560. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201912015.htm

    HU Zhiping, ZHANG Dan, ZHANG Yaguo, et al. Test study on deformation and failure mechanisms of utility tunnels obliquely crossing ground fissures[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2550-2560. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201912015.htm
    [15]
    黄大维, 周顺华, 冯青松, 等. 地表超载对软、硬地层中既有盾构隧道影响的试验研究[J]. 岩土工程学报, 2019, 41(5): 942-949. doi: 10.11779/CJGE201905018

    HUANG Dawei, ZHOU Shunhua, FENG Qingsong, et al. Experimental study on influences of surface surcharge on existing shield tunnels buried in soft and hard soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 942-949. (in Chinese) doi: 10.11779/CJGE201905018
    [16]
    徐强, 白超宇, 李文阳, 等. 地下综合管廊穿越活动地裂缝变形与内力的响应分析[J]. 工程地质学报, 2021, 29(5): 1632-1639. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202105037.htm

    XU Qiang, BAI Chaoyu, LI Wenyang, et al. Response analysis of deformation and internal force of underground utility tunnel crossing active ground fracture[J]. Journal of Engineering Geology, 2021, 29(5): 1632-1639. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202105037.htm
    [17]
    张常光, 吴凯, 李宗辉, 等. 考虑中间主应力的非饱和土上埋式涵洞竖向土压力公式[J]. 建筑科学与工程学报, 2021, 38(6): 177-185. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202106023.htm

    ZHANG Changguang, WU Kai, LI Zonghui, et al. Formulation of vertical earth pressure against positive buried culvert in unsaturated soils considering intermediate principal stress[J]. Journal of Architecture and Civil Engineering, 2021, 38(6): 177-185. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202106023.htm
    [18]
    赵秋, 陈鹏, 赵煜炜, 等. 台后设置拱形结构的无缝桥梁整体受力性能[J/OL]. 吉林大学学报(工学版): 1-10[2023-02-08]. https://dori.org/10.13229/j.cnki.jdxbgxb20221081.

    ZHAO Qiu, CHEN Peng, ZHAO Yiwei, et al. Overall mechanical performance of seamless bridge with arched structure behind platform[J/OL]. Journal of Jilin University (Engineering edition): 1-10[2023-02-08]. https://dori.org/10.13229/j.cnki.jdxbgxb20221081. (in Chinese)
  • Related Articles

    [1]LUAN Shaokai, CHEN Su, DING Yi, JIN Liguo, WANG Juke, LI Xiaojun. Wave simulation of symmetric V-shaped canyon based on physics-informed deep learning method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1246-1253. DOI: 10.11779/CJGE20230263
    [2]Research on machine learning model for refined inversion of mechanical parameters of surrounding rock considering zonal deterioration[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240641
    [3]WANG Yuke, FENG Shuang, ZHONG Yanhui, ZHANG Bei. A data-driven model for predicting shear strength indexes of normally consolidated soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 183-188. DOI: 10.11779/CJGE2023S20025
    [4]ZHANG De, ZHANG Zechao, ZHANG Lulu, ZHANG Jie, CAO Zijun. Bayesian estimation of probability distributions of undrained shear strength of soils with limited site data[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1259-1268. DOI: 10.11779/CJGE20220299
    [5]TAO Yuan-qin, SUN Hong-lei, CAI Yuan-qiang. Bayesian back analysis considering constraints[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1878-1886. DOI: 10.11779/CJGE202110014
    [6]LIU Fei-yue, LIU Yi-han, YANG Tian-hong, XIN Jun-chang, ZHANG Peng-hai, DONG Xin, ZHANG Hai-tao. Meticulous evaluation of rock mass quality in mine engineering based on machine learning of core photos[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 968-974. DOI: 10.11779/CJGE202105023
    [7]LIU Hou-xiang, LI Wang-shi, ZHA Zhuan-yi, JIANG Wu-jun, XU Teng. Method for surrounding rock mass classification of highway tunnels based on deep learning technology[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1809-1817. DOI: 10.11779/CJGE201810007
    [8]ZHANG Li-song, YAN Xiang-zhen, YANG Heng-lin, YANG Xiu-juan. GSI-JP crushed classification prediction methodof coal rock based on logging information[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1091-1096.
    [9]SU Guo-shao, XIAO Yi-long. Gaussian process method for slope reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 916.
    [10]LIU Kaiyun, QIAO Chunsheng, TENG Wenyan. Research on non-linear time sequence intelligent model construction and prediction of slope displacement by using support vector machine algorithm[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 57-61.
  • Cited by

    Periodical cited type(8)

    1. 张奥宇,杨科,池小楼,张杰. 基于GA-BP神经网络岩石单轴抗压强度预测模型研究. 煤. 2025(01): 6-10+17 .
    2. 宋超,赵腾远. 黏土路基回弹模量预测及贝叶斯模型选择研究. 长沙理工大学学报(自然科学版). 2024(01): 88-99 .
    3. 王彦武,郭青林,赵腾远,张燕芳,刘晓颖,裴强强,朱毓. 基于温度补偿的5TE传感器含水率监测数据校正方法研究. 石窟与土遗址保护研究. 2024(01): 4-16 .
    4. 陈朗,陈娱,何俊霖,吕淑宁. 基于前期累积降雨和高斯过程回归模型的滑坡位移预测. 岩石力学与工程学报. 2024(S1): 3491-3497 .
    5. 郑可馨,吴益平,李江,苗发盛,柯超. 基于高斯过程回归的岩体结构面粗糙度系数预测模型. 地质科技通报. 2024(04): 252-261 .
    6. 刘杰. 基于高斯过程时间序列回归最优核函数和历史点数的锚杆支护钻进压力预测. 煤炭学报. 2024(S1): 92-107 .
    7. 原钢,刘杰. 基于多参数输入与输出高斯过程回归的锚杆支护状态预测. 液压气动与密封. 2023(11): 47-50 .
    8. 赵腾远,宋超,谌文武,郭志谦,许领. 基于k-means聚类与高斯过程分类的土遗址裂隙病害发育等级概率预测. 石窟与土遗址保护研究. 2023(04): 75-86 .

    Other cited types(1)

Catalog

    Article views (253) PDF downloads (67) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return