Citation: | ZHANG De, ZHANG Zechao, ZHANG Lulu, ZHANG Jie, CAO Zijun. Bayesian estimation of probability distributions of undrained shear strength of soils with limited site data[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1259-1268. DOI: 10.11779/CJGE20220299 |
[1] |
李典庆, 吕天健, 唐小松. 基于多维Gaussian Copula的岩土体设计参数概率转换模型构建方法[J]. 岩土工程学报, 2021, 43(9): 1592-1601. doi: 10.11779/CJGE202109003
LI Dianqing, LÜ Tianjian, TANG Xiaosong. Establishing probabilistic transformation models for geotechnical design parameters using multivariate Gaussian Copula[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1592-1601. (in Chinese) doi: 10.11779/CJGE202109003
|
[2] |
张广文, 刘令瑶. 确定随机变量概率分布参数的推广Bayes法[J]. 岩土工程学报, 1995, 17(3): 91-94. http://www.cgejournal.com/cn/article/id/9873
ZHANG Guangwen, LIU Lingyao. Extended Bayes method for determining probability distribution parameters of random variables[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(3): 91-94. (in Chinese) http://www.cgejournal.com/cn/article/id/9873
|
[3] |
American Petroleum Institute. ANSI/API RECOMMENDED PRACTICE 2GEO Geotechnical and Foundation Design Considerations[M]. Washington: API Publishing Services, 2014.
|
[4] |
LUMB P. The variability of natural soils[J]. Canadian Geotechnical Journal, 1966, 3(2): 74-97. doi: 10.1139/t66-009
|
[5] |
LACASSE S, NADIM F. Uncertainties in characterising soil properties[C]//Uncertainty in the Geologic Environment: from Theory to Practice. New York, 1996.
|
[6] |
宫凤强, 李夕兵, 邓建. 小样本岩土参数概率分布的正态信息扩散法推断[J]. 岩石力学与工程学报, 2006, 25(12): 2559-2564. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200612030.htm
GONG Fengqiang, LI Xibing, DENG Jian. Probability distribution of small samples of geotechnical parameters using normal information spread method[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2559-2564. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200612030.htm
|
[7] |
骆飞, 罗强, 蒋良潍, 等. 小样本岩土参数的Bootstrap估计及边坡稳定分析[J]. 岩石力学与工程学报, 2017, 36(2): 370-379. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201702009.htm
LUO Fei, LUO Qiang, JIANG Liangwei, et al. Bootstrap estimation for geotechnical parameters of small samples and slope stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(2): 370-379. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201702009.htm
|
[8] |
KULHAWY F H, MAYNE P W. Manual on Estimating Soil Properties for Foundation Design: EL-6800[R]. Palo Alto: Electric Power Research Institute, 1990.
|
[9] |
PHOON K K, KULHAWY F H. Evaluation of geotechnical property variability[J]. Canadian Geotechnical Journal, 1999, 36(4): 625-639. doi: 10.1139/t99-039
|
[10] |
MESRI G. Discussion of "New design procedure for stability of soft clays"[J]. Journal of the Geotechnical Engineering Division, 1975, 101(4): 409-412. doi: 10.1061/AJGEB6.0005026
|
[11] |
MESRI G. A reevaluation of Su(mob) = 0.22σ′p using laboratory shear tests[J]. Canadian Geotechnical Journal, 1989, 26(1): 162-164. doi: 10.1139/t89-017
|
[12] |
CHANDLER R J. The in-situ measurement of undrained shear strength of clays using the field vane[C]//Vane Shear Strength Testing in Soils: Field and Laboratory Studies (ASTM STP 1014). Baltimore, 1988.
|
[13] |
CAO Z J, WANG Y. Bayesian model comparison and characterization of undrained shear strength[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(6): 04014018. doi: 10.1061/(ASCE)GT.1943-5606.0001108
|
[14] |
CHING J, PHOON K K, LI K H, et al. Multivariate probability distribution for some intact rock properties[J]. Canadian Geotechnical Journal, 2019, 56(8): 1080-1097. doi: 10.1139/cgj-2018-0175
|
[15] |
TANG X S, LI D Q, RONG G, et al. Impact of copula selection on geotechnical reliability under incomplete probability information[J]. Computers and Geotechnics, 2013, 49: 264-278. doi: 10.1016/j.compgeo.2012.12.002
|
[16] |
汪海林, 刘航宇, 顾晓强, 等. 基于多元概率分布模型的珠海黏土多参数预测[J]. 岩土工程学报, 2021, 43(增刊2): 193-196. doi: 10.11779/CJGE2021S2046
WANG Hailin, LIU Hangyu, GU Xiaoqiang, et al. Multi-parameter prediction of Zhuhai clay based on multivariate probability distribution model[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 193-196. (in Chinese) doi: 10.11779/CJGE2021S2046
|
[17] |
BOZORGZADEH N, HARRISON J P, ESCOBAR M D. Hierarchical Bayesian modelling of geotechnical data: application to rock strength[J]. Géotechnique, 2019, 69(12): 1056-1070. doi: 10.1680/jgeot.17.P.282
|
[18] |
XIAO S H, ZHANG J, YE J M, et al. Establishing region-specific N–Vs relationships through hierarchical Bayesian modeling[J]. Engineering Geology, 2021, 287: 106105. http://www.sciencedirect.com/science/article/pii/S0013795221001162
|
[19] |
CHING J, PHOON K K. Constructing site-specific multivariate probability distribution model using Bayesian machine learning[J]. Journal of Engineering Mechanics, 2019, 145(1): 04018126. http://www.onacademic.com/detail/journal_1000040914564910_437a.html
|
[20] |
CHING J, PHOON K K. Correlations among some clay parameters—the multivariate distribution[J]. Canadian Geotechnical Journal, 2014, 51(6): 686-704. http://www.researchgate.net/profile/Jianye_Ching/publication/262924656_Correlations_among_some_clay_parameters_-_The_multivariate_distribution/links/5476bda20cf29afed6142525.pdf
|
[21] |
CHING J, WU S, PHOON K K. Constructing quasi-site-specific multivariate probability distribution using hierarchical Bayesian model[J]. Journal of Engineering Mechanics, 2021, 147(10): 04021069. http://doc.paperpass.com/foreign/rgArti2021163572020.html
|
[22] |
GELMAN A, CARLIN J B, STERN H S, et al. Bayesian Data Analysis[M]. 3rd ed. New York: Chapman and Hall/CRC, 2013.
|
[23] |
CHING J, PHOON K K. Transformations and correlations among some clay parameters—the global database[J]. Canadian Geotechnical Journal, 2014, 51(6): 663-685. http://doc.paperpass.com/foreign/rgArti2014154070750.html
|
[24] |
WU X Z. Quantifying the non-normality of shear strength of geomaterials[J]. European Journal of Environmental and Civil Engineering, 2020, 24(6): 740-766. http://www.researchgate.net/profile/Xing_Wu12/publication/322198352_Quantifying_the_non-normality_of_shear_strength_of_geomaterials/links/5a5f6c700f7e9b964a1cbe84/Quantifying-the-non-normality-of-shear-strength-of-geomaterials.pdf
|
[25] |
TANG X S, WANG J P, YANG W, et al. Joint probability modeling for two debris-flow variables: copula approach[J]. Natural Hazards Review, 2018, 19(2) 05018004. http://smartsearch.nstl.gov.cn/paper_detail.html?id=28c2a8479af5c13c9ae131f6483b146c
|
[26] |
CAO Z J, WANG Y, LI D Q. Quantification of prior knowledge in geotechnical site characterization[J]. Engineering Geology, 2016, 203: 107-116.
|
[27] |
LUNN D, JACKSON C, BEST N, et al. The BUGS Book: A Practical Introduction to Bayesian Analysis[M]. 1st ed. Chapman and Hall/CRC, 2012.
|
[28] |
BOZORGZADEH N, BATHURST R J. Hierarchical Bayesian approaches to statistical modelling of geotechnical data[J]. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2022, 16(3): 452-469. doi: 10.1080/17499518.2020.1864411
|