• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG De, ZHANG Zechao, ZHANG Lulu, ZHANG Jie, CAO Zijun. Bayesian estimation of probability distributions of undrained shear strength of soils with limited site data[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1259-1268. DOI: 10.11779/CJGE20220299
Citation: ZHANG De, ZHANG Zechao, ZHANG Lulu, ZHANG Jie, CAO Zijun. Bayesian estimation of probability distributions of undrained shear strength of soils with limited site data[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1259-1268. DOI: 10.11779/CJGE20220299

Bayesian estimation of probability distributions of undrained shear strength of soils with limited site data

More Information
  • Received Date: March 20, 2022
  • Available Online: February 15, 2023
  • To address the issue of poor reliability of the design parameters due to limited or incomplete geotechnical investigation data, a cohesive soil parameter database containing 1679 sets of data from 141 sites is established. The site-specific Bayesian method (SBM) and the hierarchical Bayesian method (HBM) are used to estimate the probability distribution of undrained shear strength of cohesive soils by utilizing the data from a specific site and multiple sites, respectively. The results show that compared with the SBM method, the HBM method can effectively reduce the uncertainty of parameter estimation when there is only limited measured data at the target site, and it is less affected by the number of measuring points at the target site. The leave-one-out cross-validation (LOO-CV) combined with the log pointwise predictive density (lppd) is used to compare the accuracy of the two methods. The results show that the lppdloo-cv index of the HBM method is larger, indicating that the overall prediction accuracy of the HBM method is higher. Therefore, the HBM method is more suitable for the estimation of undrained shear strength parameters in the case of limited site data, and the posterior means obtained by the HBM method can be used for parameter estimation of new sites.
  • [1]
    李典庆, 吕天健, 唐小松. 基于多维Gaussian Copula的岩土体设计参数概率转换模型构建方法[J]. 岩土工程学报, 2021, 43(9): 1592-1601. doi: 10.11779/CJGE202109003

    LI Dianqing, LÜ Tianjian, TANG Xiaosong. Establishing probabilistic transformation models for geotechnical design parameters using multivariate Gaussian Copula[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1592-1601. (in Chinese) doi: 10.11779/CJGE202109003
    [2]
    张广文, 刘令瑶. 确定随机变量概率分布参数的推广Bayes法[J]. 岩土工程学报, 1995, 17(3): 91-94. http://www.cgejournal.com/cn/article/id/9873

    ZHANG Guangwen, LIU Lingyao. Extended Bayes method for determining probability distribution parameters of random variables[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(3): 91-94. (in Chinese) http://www.cgejournal.com/cn/article/id/9873
    [3]
    American Petroleum Institute. ANSI/API RECOMMENDED PRACTICE 2GEO Geotechnical and Foundation Design Considerations[M]. Washington: API Publishing Services, 2014.
    [4]
    LUMB P. The variability of natural soils[J]. Canadian Geotechnical Journal, 1966, 3(2): 74-97. doi: 10.1139/t66-009
    [5]
    LACASSE S, NADIM F. Uncertainties in characterising soil properties[C]//Uncertainty in the Geologic Environment: from Theory to Practice. New York, 1996.
    [6]
    宫凤强, 李夕兵, 邓建. 小样本岩土参数概率分布的正态信息扩散法推断[J]. 岩石力学与工程学报, 2006, 25(12): 2559-2564. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200612030.htm

    GONG Fengqiang, LI Xibing, DENG Jian. Probability distribution of small samples of geotechnical parameters using normal information spread method[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2559-2564. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200612030.htm
    [7]
    骆飞, 罗强, 蒋良潍, 等. 小样本岩土参数的Bootstrap估计及边坡稳定分析[J]. 岩石力学与工程学报, 2017, 36(2): 370-379. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201702009.htm

    LUO Fei, LUO Qiang, JIANG Liangwei, et al. Bootstrap estimation for geotechnical parameters of small samples and slope stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(2): 370-379. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201702009.htm
    [8]
    KULHAWY F H, MAYNE P W. Manual on Estimating Soil Properties for Foundation Design: EL-6800[R]. Palo Alto: Electric Power Research Institute, 1990.
    [9]
    PHOON K K, KULHAWY F H. Evaluation of geotechnical property variability[J]. Canadian Geotechnical Journal, 1999, 36(4): 625-639. doi: 10.1139/t99-039
    [10]
    MESRI G. Discussion of "New design procedure for stability of soft clays"[J]. Journal of the Geotechnical Engineering Division, 1975, 101(4): 409-412. doi: 10.1061/AJGEB6.0005026
    [11]
    MESRI G. A reevaluation of Su(mob) = 0.22σp using laboratory shear tests[J]. Canadian Geotechnical Journal, 1989, 26(1): 162-164. doi: 10.1139/t89-017
    [12]
    CHANDLER R J. The in-situ measurement of undrained shear strength of clays using the field vane[C]//Vane Shear Strength Testing in Soils: Field and Laboratory Studies (ASTM STP 1014). Baltimore, 1988.
    [13]
    CAO Z J, WANG Y. Bayesian model comparison and characterization of undrained shear strength[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(6): 04014018. doi: 10.1061/(ASCE)GT.1943-5606.0001108
    [14]
    CHING J, PHOON K K, LI K H, et al. Multivariate probability distribution for some intact rock properties[J]. Canadian Geotechnical Journal, 2019, 56(8): 1080-1097. doi: 10.1139/cgj-2018-0175
    [15]
    TANG X S, LI D Q, RONG G, et al. Impact of copula selection on geotechnical reliability under incomplete probability information[J]. Computers and Geotechnics, 2013, 49: 264-278. doi: 10.1016/j.compgeo.2012.12.002
    [16]
    汪海林, 刘航宇, 顾晓强, 等. 基于多元概率分布模型的珠海黏土多参数预测[J]. 岩土工程学报, 2021, 43(增刊2): 193-196. doi: 10.11779/CJGE2021S2046

    WANG Hailin, LIU Hangyu, GU Xiaoqiang, et al. Multi-parameter prediction of Zhuhai clay based on multivariate probability distribution model[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 193-196. (in Chinese) doi: 10.11779/CJGE2021S2046
    [17]
    BOZORGZADEH N, HARRISON J P, ESCOBAR M D. Hierarchical Bayesian modelling of geotechnical data: application to rock strength[J]. Géotechnique, 2019, 69(12): 1056-1070. doi: 10.1680/jgeot.17.P.282
    [18]
    XIAO S H, ZHANG J, YE J M, et al. Establishing region-specific NVs relationships through hierarchical Bayesian modeling[J]. Engineering Geology, 2021, 287: 106105. http://www.sciencedirect.com/science/article/pii/S0013795221001162
    [19]
    CHING J, PHOON K K. Constructing site-specific multivariate probability distribution model using Bayesian machine learning[J]. Journal of Engineering Mechanics, 2019, 145(1): 04018126. http://www.onacademic.com/detail/journal_1000040914564910_437a.html
    [20]
    CHING J, PHOON K K. Correlations among some clay parameters—the multivariate distribution[J]. Canadian Geotechnical Journal, 2014, 51(6): 686-704. http://www.researchgate.net/profile/Jianye_Ching/publication/262924656_Correlations_among_some_clay_parameters_-_The_multivariate_distribution/links/5476bda20cf29afed6142525.pdf
    [21]
    CHING J, WU S, PHOON K K. Constructing quasi-site-specific multivariate probability distribution using hierarchical Bayesian model[J]. Journal of Engineering Mechanics, 2021, 147(10): 04021069. http://doc.paperpass.com/foreign/rgArti2021163572020.html
    [22]
    GELMAN A, CARLIN J B, STERN H S, et al. Bayesian Data Analysis[M]. 3rd ed. New York: Chapman and Hall/CRC, 2013.
    [23]
    CHING J, PHOON K K. Transformations and correlations among some clay parameters—the global database[J]. Canadian Geotechnical Journal, 2014, 51(6): 663-685. http://doc.paperpass.com/foreign/rgArti2014154070750.html
    [24]
    WU X Z. Quantifying the non-normality of shear strength of geomaterials[J]. European Journal of Environmental and Civil Engineering, 2020, 24(6): 740-766. http://www.researchgate.net/profile/Xing_Wu12/publication/322198352_Quantifying_the_non-normality_of_shear_strength_of_geomaterials/links/5a5f6c700f7e9b964a1cbe84/Quantifying-the-non-normality-of-shear-strength-of-geomaterials.pdf
    [25]
    TANG X S, WANG J P, YANG W, et al. Joint probability modeling for two debris-flow variables: copula approach[J]. Natural Hazards Review, 2018, 19(2) 05018004. http://smartsearch.nstl.gov.cn/paper_detail.html?id=28c2a8479af5c13c9ae131f6483b146c
    [26]
    CAO Z J, WANG Y, LI D Q. Quantification of prior knowledge in geotechnical site characterization[J]. Engineering Geology, 2016, 203: 107-116.
    [27]
    LUNN D, JACKSON C, BEST N, et al. The BUGS Book: A Practical Introduction to Bayesian Analysis[M]. 1st ed. Chapman and Hall/CRC, 2012.
    [28]
    BOZORGZADEH N, BATHURST R J. Hierarchical Bayesian approaches to statistical modelling of geotechnical data[J]. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2022, 16(3): 452-469. doi: 10.1080/17499518.2020.1864411

Catalog

    Article views (329) PDF downloads (93) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return