Citation: | WANG Yuke, FENG Shuang, ZHONG Yanhui, ZHANG Bei. A data-driven model for predicting shear strength indexes of normally consolidated soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 183-188. DOI: 10.11779/CJGE2023S20025 |
[1] |
VANAPALLI S K, FREDLUND D G. Comparison of different procedures to predict unsaturated soil shear strength[C]// Advances in Unsaturated Geotechnics. Denver, 2000.
|
[2] |
雷洁, 张国明, 刘连友, 等. 土壤抗剪强度测定与影响因素研究进展[J]. 北京师范大学学报(自然科学版), 2016, 52(4): 486-492. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201604014.htm
LEI Jie, ZHANG Guoming, LIU Lianyou, et al. Measuring soil shear strength and impact factors[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(4): 486-492. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201604014.htm
|
[3] |
雷国辉, 高翔, 徐可, 等. 饱和软黏土固结过程中的不排水抗剪强度特性[J]. 岩土工程学报, 2019, 41(1): 41-49. doi: 10.11779/CJGE201901004
LEI Guohui, GAO Xiang, XU Ke, et al. Behavior of undrained shear strength of saturated soft clay under consolidation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 41-49. (in Chinese) doi: 10.11779/CJGE201901004
|
[4] |
胡海军, 魏丽敏, 冷伍明. 黏土强度指标的测定和选取[J]. 岩土力学, 2007, 28(12): 2698-2704. doi: 10.3969/j.issn.1000-7598.2007.12.042
HU Haijun, WEI Limin, LENG Wuming. Determination and choice of strength index of clay[J]. Rock and Soil Mechanics, 2007, 28(12): 2698-2704. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.12.042
|
[5] |
闫澍旺, 封晓伟, 侯晋芳, 等. 用十字板强度推算软黏土抗剪强度指标的方法及应用[J]. 岩土工程学报, 2009, 31(12): 1805-1810. doi: 10.3321/j.issn:1000-4548.2009.12.001
YAN Shuwang, FENG Xiaowei, HOU Jinfang, et al. Deduction and application of strength parameters of soft clay by use of vane strength[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1805-1810. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.12.001
|
[6] |
ZHANG P, YIN Z Y, JIN Y F. Machine learning-based modelling of soil properties for geotechnical design: review, tool development and comparison[J]. Archives of Computational Methods in Engineering, 2022, 29(2): 1229-1245. doi: 10.1007/s11831-021-09615-5
|
[7] |
ZHANG W G, LI H R, LI Y Q, et al. Application of deep learning algorithms in geotechnical engineering: a short critical review[J]. Artificial Intelligence Review, 2021, 54(8): 5633-5673. doi: 10.1007/s10462-021-09967-1
|
[8] |
LI Y Y, RAHARDJO H, SATYANAGA A, et al. Soil database development with the application of machine learning methods in soil properties prediction[J]. Engineering Geology, 2022, 306: 106769. doi: 10.1016/j.enggeo.2022.106769
|
[9] |
ZHANG Q, BARRI K, JIAO P, et al. Genetic programming in civil engineering: advent, applications and future trends[J]. The Artificial intelligence review, 2021, 54(3): 1863-1885. doi: 10.1007/s10462-020-09894-7
|
[10] |
DAS S K, BASUDHAR P K. Prediction of residual friction angle of clays using artificial neural network[J]. Engineering Geology, 2008, 100(3/4): 142-145.
|
[11] |
PHAM B T, SON L H, HOANG T A, et al. Prediction of shear strength of soft soil using machine learning methods[J]. Catena, 2018, 166: 181-191. doi: 10.1016/j.catena.2018.04.004
|
[12] |
刘晓燕, 蔡国军, 邹海峰, 等. 基于CPTU数据融合技术的黏性土应力历史与强度特性评价研究[J]. 岩土工程学报, 2019, 41(7): 1270-1278. doi: 10.11779/CJGE201907011
LIU Xiaoyan, CAI Guojun, ZOU Haifeng, et al. Prediction of stress history and strength of cohesive soils based on CPTU and data fusion techniques[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1270-1278. (in Chinese) doi: 10.11779/CJGE201907011
|
[13] |
RABBANI A, SAMUI P, KUMARI S. A novel hybrid model of augmented grey wolf optimizer and artificial neural network for predicting shear strength of soil[J]. Modeling Earth Systems and Environment, 2023, 9(2): 2327-2347. doi: 10.1007/s40808-022-01610-4
|
[14] |
顾春生, 唐鑫, 朱常坤, 等. 基于主成分分析法优化神经网络的滆湖组黏性土抗剪强度预测[J]. 科学技术与工程, 2023, 23(28): 11980-11989. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202328008.htm
GU Chunsheng, TANG Xin, ZHU Changkun, et al. Prediction of shear strength of cohesive soil in Gehu formation based on back propagation neural network optimized by principal component analysis[J]. Science Technology and Engineering, 2023, 23(28): 11980-11989. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202328008.htm
|
[15] |
黄鑫中. 不同击实功下非饱和黄土强度特性研究[D]. 西安: 长安大学, 2021.
HUANG Xinzhong. Study on Strength Characteristics of Unsaturated Loess Under Different Compaction Work[D]. Xi'an: Changan University, 2021. (in Chinese)
|
[16] |
雷昊楠. 黄土剪切面特征及抗剪强度影响因素试验研究[D]. 西安: 长安大学, 2021.
LEI Haonan. Research for Loess Shear Surface Characteristics and Influencing Factors of Shear Strength[D]. Xi'an: Changan University, 2021. (in Chinese)
|
[17] |
朱志坤. 干密度和含水率对太原重塑黄土强度及强度参数影响的研究[D]. 太原: 太原理工大学, 2018.
ZHU Zhikun. Effect of Dry Density and Water Content on the Stregth and Strength Parameters of Remolded Loess in Taiyuan[D]. Taiyuan: Taiyuan University of Technology, 2018. (in Chinese)
|
[18] |
陈梦芸. 击实黏土抗拉强度研究[D]. 南京: 南京大学, 2014.
CHEN Mengyun. Study on Tensile Strength of Compacted Clay[D]. Nanjing: Nanjing University, 2014. (in Chinese)
|
[19] |
杨永亮. 不同击实因素对黄土状粉土击实特性及抗剪强度影响的试验研究[D]. 太原: 太原理工大学, 2019.
YANG Yongliang. Effect of Different Compaction Factors on Compaction Characteristics and Shear Strength of Loess Silt[D]. Taiyuan: Taiyuan University of Technology, 2019. (in Chinese)
|
[20] |
DE WINTER J C F, GOSLING S D, POTTER J. Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: a tutorial using simulations and empirical data[J]. Psychological Methods, 2016, 21(3): 273-290. doi: 10.1037/met0000079
|
[21] |
SHRESTHA D L, SOLOMATINE D P. AdaBoost RT: a boosting algorithm for regression problems[J]. Proceedings of the IEEE International Joint Conference on Neural Networks, 2004, 2: 1163-1168.
|
[22] |
GONG H R, SUN Y R, SHU X, et al. Use of random forests regression for predicting IRI of asphalt pavements[J]. Construction and Building Materials, 2018, 189: 890-897. doi: 10.1016/j.conbuildmat.2018.09.017
|
[23] |
WEI P F, LU Z Z, SONG J W. Variable importance analysis: a comprehensive review[J]. Reliability Engineering & System Safety, 2015, 142: 399-432.
|