• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
TAO Yuan-qin, SUN Hong-lei, CAI Yuan-qiang. Bayesian back analysis considering constraints[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1878-1886. DOI: 10.11779/CJGE202110014
Citation: TAO Yuan-qin, SUN Hong-lei, CAI Yuan-qiang. Bayesian back analysis considering constraints[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1878-1886. DOI: 10.11779/CJGE202110014

Bayesian back analysis considering constraints

More Information
  • Received Date: January 13, 2021
  • Available Online: December 02, 2022
  • Soil parameters significantly affect the prediction performance of geotechnical models. In the field of parameter identification, the MCMC-based Bayesian method is an effective way to infer the probability distribution of soil parameters. However, this method only considers the prior distribution of soil parameters and the difference between predictions and observations, without considering other additional information such as empirical correlations between soil parameters. In addition, the MCMC method leads to high computational cost if the numerical methods are used as the model, which limits its application. In this study, a new approximate Bayesian method considering the additional constraints is proposed, named REnKF-MDA. The proposed method is compared with the MCMC-based Bayesian method, MCMC-based Bayesian method with constraints, and REnKF. The effectiveness of the proposed REnKF-MDA method is illustrated by a simple polynomial case and a foundation settlement project. The results indicate that assimilating the additional constraint informations is helpful to improve the rationality and confidence of the inferred parameters. The confidence of the constraint is determined by the covariance of the constraint information. Taking the MCMC-based Bayesian method with constraints as a reference, the REnKF provides an accurate evaluation of the mean value, but significantly underestimates the uncertainty of the posterior distributions. In contrast, the REnKF-MDA estimates both the mean and uncertainty well.
  • [1]
    WANG L, HWANG J H, LUO Z, et al. Probabilistic back analysis of slope failure -a case study in taiwan[J]. Computers and Geotechnics, 2013, 51: 12-23. doi: 10.1016/j.compgeo.2013.01.008
    [2]
    蒋水华, 刘贤, 尧睿智, 等. 基于贝叶斯更新和信息量分析的边坡钻孔布置方案优化设计方法[J]. 岩土工程学报, 2018, 40(10): 1871-1879. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810016.htm

    JIANG Shui-hua, LIU Xian, YAO Rui-zhi, et al. Optimization design approach for layout scheme of slope boreholes based on Bayesian updating and value of information analysis[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1871-1879. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810016.htm
    [3]
    郑栋, 黄劲松, 李典庆. 基于多源信息融合的路堤沉降预测方法[J]. 岩土力学, 2019, 40(2): 709-727. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902034.htm

    ZHENG Dong, HUANG Jin-song, LI Dian-qing. An approach for predicting embankment settlement by integrating multi-source information[J]. Rock and Soil Mechanics, 2019, 40(2): 709-727. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902034.htm
    [4]
    LO M K, LEUNG Y F. Bayesian updating of subsurface spatial variability for improved prediction of braced excavation response[J]. Canadian Geotechnical Journal, 2019, 56(8): 1169-1183. doi: 10.1139/cgj-2018-0409
    [5]
    CAO Z J, WANG Y. Bayesian approach for probabilistic site characterization using cone penetration tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(2): 267-276. doi: 10.1061/(ASCE)GT.1943-5606.0000765
    [6]
    CAI Y, LI J, LI X, et al. Estimating soil resistance at unsampled locations based on limited CPT data[J]. Bulletin of Engineering Geology and the Environment, 2018, 78(5): 3637-3648.
    [7]
    HASHASH Y M A, LEVASSEUR S, OSOULI A, et al. Comparison of two inverse analysis techniques for learning deep excavation response[J]. Computers and Geotechnics, 2010, 37(3): 323-333. doi: 10.1016/j.compgeo.2009.11.005
    [8]
    YIN Z Y, JIN Y F, SHEN J S, et al. Optimization techniques for identifying soil parameters in geotechnical engineering: Comparative study and enhancement[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(1): 70-94. doi: 10.1002/nag.2714
    [9]
    ZHAO B D, ZHANG L L, JENG D S, et al. Inverse analysis of deep excavation using differential evolution algorithm[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(2): 115-134. doi: 10.1002/nag.2287
    [10]
    蒋水华, 刘源, 张小波, 等. 有限数据条件下空间变异岩土力学参数随机反演分析及比较[J]. 岩石力学与工程学报, 2020, 39(6): 190-201. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006017.htm

    JIANG Shui-hua, LIU Yuan, ZHANG Xiao-bo, et al. Stochastic back analysis and comparison of spatially varying geotechnical mechanical parameters based on limited data[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 190-201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006017.htm
    [11]
    田密, 李典庆, 曹子君, 等. 基于贝叶斯理论的土性参数空间变异性量化方法[J]. 岩土力学, 2017, 38(11): 3355-3362. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711036.htm

    TIAN Mi, LI Dian-qing, CAO Zi-jun, et al. Quantification of spatial variability of soil parameters using Bayesian approaches[J]. Rock and Soil Mechanics, 2017, 38(11): 3355-3362. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711036.htm
    [12]
    QI X H, ZHOU W H. An efficient probabilistic back-analysis method for braced excavations using wall deflection data at multiple points[J]. Computers and Geotechnics, 2017, 85: 186-198. doi: 10.1016/j.compgeo.2016.12.032
    [13]
    LI X Y, ZHANG L M, JIANG S H. Updating performance of high rock slopes by combining incremental time-series monitoring data and three-dimensional numerical analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 83: 252-261. doi: 10.1016/j.ijrmms.2014.09.011
    [14]
    SUN Y, HUANG J, JIN W, SLOAN S W, JIANG Q. Bayesian updating for progressive excavation of high rock slopes using multi-type monitoring data[J]. Engineering Geology, 2019, 252: 1-13. doi: 10.1016/j.enggeo.2019.02.013
    [15]
    XIAO H, CINNELLA P. Quantification of model uncertainty in RANS simulations: a review[J]. Progress in Aerospace Sciences, 2019, 108: 1-31. doi: 10.1016/j.paerosci.2018.10.001
    [16]
    IGLESIAS M A, LAW K J H, STUART A M. Ensemble Kalman methods for inverse problems[J]. Inverse Probl, 2013, 29(4): 045001. doi: 10.1088/0266-5611/29/4/045001
    [17]
    EVENSEN G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research, 1994, 99(C5): 10143-10162. doi: 10.1029/94JC00572
    [18]
    HOMMELS A, MURAKAMI A, NISHIMURA S I. Comparison of the Ensemble Kalman Filter with the Unscented Kalman Filter: Application to the Construction of A Road Embankment[M]. 19th European Young Geotechnical Engineers Conference, 2008, Gyor.
    [19]
    LIU K, VARDON P J, HICKS M A. Sequential reduction of slope stability uncertainty based on temporal hydraulic measurements via the ensemble Kalman filter[J]. Computers and Geotechnics, 2018, 95: 147-161. doi: 10.1016/j.compgeo.2017.09.019
    [20]
    TAO Y, SUN H, CAI Y. Predicting soil settlement with quantified uncertainties by using ensemble Kalman filtering[J]. Engineering Geology, 2020, 276: 105753. doi: 10.1016/j.enggeo.2020.105753
    [21]
    EMERICK A A, REYNOLDS A C. History matching time-lapse seismic data using the ensemble Kalman filter with multiple data assimilations[J]. Computational Geosciences, 2012, 16(3): 639-659.
    [22]
    ZHANG X, XIAO H, GOMEZ T, COUTIER-DELGOSHA O. Evaluation of ensemble methods for quantifying uncertainties in steady-state CFD applications with small ensemble sizes[J]. Computers & Fluids, 2020, 203: 104530.
    [23]
    WANG D, CHEN Y, CAI X. State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter[J]. Water Resources Research, 2009, 45: 10.1029.
    [24]
    ZHANG X L, MICHEL N, STR FER C, XIAO H. Regularized ensemble Kalman methods for inverse problems[J]. Journal of Computational Physics, 2020, 416: 109517.
    [25]
    WU J, WANG J X, SHADDEN S C. Adding constraints to bayesian inverse problems[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33: 1666-1673.
    [26]
    VRUGT J A. Markov chain Monte Carlo simulation using the DREAM software package: theory, concepts, and MATLAB implementation[J]. Environmental Modelling & Software, 2016, 75: 273-316.
    [27]
    李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004: 253-254.

    LI Guang-xin. Advanced Soil Mechanics[M]. Beijing: Tsinghua University Press, 2004: 253-254. (in Chinese)
    [28]
    AZZOUZ A S, KRIZEK R J, COROTIS R B. Regression analysis of soil compressibility[J]. Soils & Foundations, 1976, 16(2): 19-29.
    [29]
    何平, 王卫东, 徐中华. 上海黏土压缩指数和回弹指数经验关系[J]. 岩土力学, 2018, 39(10): 275-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810035.htm

    HE Ping, WANG Wei-dong, XU Zhong-hua. Empirical correlations of compression index and swelling index for Shanghai clay[J]. Rock and Soil Mechanics, 2018, 39(10): 275-284. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810035.htm
    [30]
    武朝军. 上海浅部土层沉积环境及其物理力学性质[D]. 上海: 上海交通大学, 2016.

    WU Chao-jun. Depositional Environment and Geotechnical Properties for the Upper Shanghai Clays[D]. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese)
  • Related Articles

    [1]SONG Chao, ZHAO Tengyuan, XU Ling. Estimation of uniaxial compressive strength based on fully Bayesian Gaussian process regression and model selection[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1664-1673. DOI: 10.11779/CJGE20220734
    [2]CHEN Si-yu, ZHANG Ga. Quality evaluation for measured data of slope displacement based on its spatial distribution[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 845-850. DOI: 10.11779/CJGE202205007
    [3]YU Yong-tang, ZHENG Jian-guo, ZHANG Ji-wen, HUANG Xin, XU Wen-tao. Prediction of settlement based on fusion model of Kalman filter and exponential smoothing algorithm[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 127-131. DOI: 10.11779/CJGE2021S1023
    [4]LIU Xiao-yan, CAI Guo-jun, ZOU Hai-feng, LI Xue-peng, LIU Song-yu. Prediction of stress history and strength of cohesive soils based on CPTU and data fusion techniques[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1270-1278. DOI: 10.11779/CJGE201907011
    [5]YU Jun, GONG Xiao-nan, LI Yuan-hai. Deformation characteristics of deep excavations based on mass data[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 319-324. DOI: 10.11779/CJGE2014S2056
    [6]XU Yang-qing, CHENG Lin. Analysis processing of monitoring data and forecast and early warning system of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk1): 219-224. DOI: 10.11779/CJGE2014S1038
    [7]HU Xiong-wu, ZHANG Ping-song, WU Rong-xin, LI Pei-gen, FU Mao-ru. All-time data analysis of transient electromagnetic method for tunnels and investigation on 1∶1 water model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2103-2109. DOI: 10.11779/CJGE201411017
    [8]WU Wei-gao, HUANG Zhong-hui, JIN Lei-ming, ZHU Yan-fei, WANG Jian-hua. Risk analysis and warning in excavation engineering based on data dependency[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 233-237.
    [9]JING Yanlin, WU Yanqing. Data mining system of loess mechanics[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1154-1158.
    [10]JIN Xin, SHEN Zhujiang, LIU Chongru. Data processing of geotechnical experiment using MATLAB[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 272-275.
  • Cited by

    Periodical cited type(13)

    1. 汪明元,陈松庭,陈彪,曾少翔. 考虑数据预处理和特征选择的静力触探参数研究. 浙江工业大学学报. 2025(01): 15-21 .
    2. 陈海鹏,周庆琨,林细旗,俞松明,唐必循. 考虑节理裂隙的隧道开挖响应分析. 安徽建筑. 2025(01): 158-160 .
    3. 汪明元,王振红,陈松庭. 基于LightGBM算法的海洋土压缩参数预测模型. 浙江工业大学学报. 2024(01): 17-24 .
    4. 汪明元,陈松庭,王耿鑫,彭成威,李欣益. 多源数据融合的土性参数预测方法. 浙江工业大学学报. 2024(04): 430-436 .
    5. 周康敏,程康,曾少翔,丁智,余颂,冯治国. 基于深度残差LSTM的盾构姿态预测. 隧道建设(中英文). 2024(08): 1643-1651 .
    6. 薛飞,徐建,许迎顺,吴坚,郭平,曾少翔,肖方初,李泽华. 基于核函数支持向量回归的盾构姿态预测方法. 浙江工业大学学报. 2024(05): 492-498 .
    7. 刘建平,冯治国,余颂,戚雯璐,陈松庭. 基于CPTU数据的海洋土土体分层研究. 河南科学. 2024(10): 1443-1449 .
    8. 吕飞华,杜坤,刘建英,韩嘉佳,姬心语. 顶管掘进引起的既有隧道变形和地表沉降多目标优化及预测. 现代隧道技术. 2024(S1): 552-559 .
    9. 田志尧,宫全美,赵昱,周顺华. 基于完全贝叶斯估计的在役地下结构荷载随机反演方法. 同济大学学报(自然科学版). 2023(03): 367-374+461 .
    10. 汪明元,张国,潘孙珏徐,陶袁钦. 基于集合卡尔曼滤波的海洋土孔隙率预测研究. 工业建筑. 2023(06): 37-42 .
    11. 吴坚,曾志全,张亚鹏,刘龙,杨长松,曾少翔. 基于循环神经网络的盾构姿态及掘进参数预测. 浙江工业大学学报. 2023(06): 663-670 .
    12. 张军波,费杰,周张见,汪轮,虞梦菲. 基于KJHH模型的基坑开挖概率反分析方法. 浙江工业大学学报. 2023(06): 671-676+698 .
    13. 张晋彰,黄宏伟,张东明,方国光,唐冲. 考虑参数空间变异性的隧道结构变形分析简化方法. 岩土工程学报. 2022(01): 134-143+205-206 . 本站查看

    Other cited types(3)

Catalog

    Article views (363) PDF downloads (169) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return