Citation: | TAO Yuan-qin, SUN Hong-lei, CAI Yuan-qiang. Bayesian back analysis considering constraints[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1878-1886. DOI: 10.11779/CJGE202110014 |
[1] |
WANG L, HWANG J H, LUO Z, et al. Probabilistic back analysis of slope failure -a case study in taiwan[J]. Computers and Geotechnics, 2013, 51: 12-23. doi: 10.1016/j.compgeo.2013.01.008
|
[2] |
蒋水华, 刘贤, 尧睿智, 等. 基于贝叶斯更新和信息量分析的边坡钻孔布置方案优化设计方法[J]. 岩土工程学报, 2018, 40(10): 1871-1879. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810016.htm
JIANG Shui-hua, LIU Xian, YAO Rui-zhi, et al. Optimization design approach for layout scheme of slope boreholes based on Bayesian updating and value of information analysis[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1871-1879. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810016.htm
|
[3] |
郑栋, 黄劲松, 李典庆. 基于多源信息融合的路堤沉降预测方法[J]. 岩土力学, 2019, 40(2): 709-727. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902034.htm
ZHENG Dong, HUANG Jin-song, LI Dian-qing. An approach for predicting embankment settlement by integrating multi-source information[J]. Rock and Soil Mechanics, 2019, 40(2): 709-727. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902034.htm
|
[4] |
LO M K, LEUNG Y F. Bayesian updating of subsurface spatial variability for improved prediction of braced excavation response[J]. Canadian Geotechnical Journal, 2019, 56(8): 1169-1183. doi: 10.1139/cgj-2018-0409
|
[5] |
CAO Z J, WANG Y. Bayesian approach for probabilistic site characterization using cone penetration tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(2): 267-276. doi: 10.1061/(ASCE)GT.1943-5606.0000765
|
[6] |
CAI Y, LI J, LI X, et al. Estimating soil resistance at unsampled locations based on limited CPT data[J]. Bulletin of Engineering Geology and the Environment, 2018, 78(5): 3637-3648.
|
[7] |
HASHASH Y M A, LEVASSEUR S, OSOULI A, et al. Comparison of two inverse analysis techniques for learning deep excavation response[J]. Computers and Geotechnics, 2010, 37(3): 323-333. doi: 10.1016/j.compgeo.2009.11.005
|
[8] |
YIN Z Y, JIN Y F, SHEN J S, et al. Optimization techniques for identifying soil parameters in geotechnical engineering: Comparative study and enhancement[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(1): 70-94. doi: 10.1002/nag.2714
|
[9] |
ZHAO B D, ZHANG L L, JENG D S, et al. Inverse analysis of deep excavation using differential evolution algorithm[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(2): 115-134. doi: 10.1002/nag.2287
|
[10] |
蒋水华, 刘源, 张小波, 等. 有限数据条件下空间变异岩土力学参数随机反演分析及比较[J]. 岩石力学与工程学报, 2020, 39(6): 190-201. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006017.htm
JIANG Shui-hua, LIU Yuan, ZHANG Xiao-bo, et al. Stochastic back analysis and comparison of spatially varying geotechnical mechanical parameters based on limited data[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 190-201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006017.htm
|
[11] |
田密, 李典庆, 曹子君, 等. 基于贝叶斯理论的土性参数空间变异性量化方法[J]. 岩土力学, 2017, 38(11): 3355-3362. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711036.htm
TIAN Mi, LI Dian-qing, CAO Zi-jun, et al. Quantification of spatial variability of soil parameters using Bayesian approaches[J]. Rock and Soil Mechanics, 2017, 38(11): 3355-3362. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711036.htm
|
[12] |
QI X H, ZHOU W H. An efficient probabilistic back-analysis method for braced excavations using wall deflection data at multiple points[J]. Computers and Geotechnics, 2017, 85: 186-198. doi: 10.1016/j.compgeo.2016.12.032
|
[13] |
LI X Y, ZHANG L M, JIANG S H. Updating performance of high rock slopes by combining incremental time-series monitoring data and three-dimensional numerical analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 83: 252-261. doi: 10.1016/j.ijrmms.2014.09.011
|
[14] |
SUN Y, HUANG J, JIN W, SLOAN S W, JIANG Q. Bayesian updating for progressive excavation of high rock slopes using multi-type monitoring data[J]. Engineering Geology, 2019, 252: 1-13. doi: 10.1016/j.enggeo.2019.02.013
|
[15] |
XIAO H, CINNELLA P. Quantification of model uncertainty in RANS simulations: a review[J]. Progress in Aerospace Sciences, 2019, 108: 1-31. doi: 10.1016/j.paerosci.2018.10.001
|
[16] |
IGLESIAS M A, LAW K J H, STUART A M. Ensemble Kalman methods for inverse problems[J]. Inverse Probl, 2013, 29(4): 045001. doi: 10.1088/0266-5611/29/4/045001
|
[17] |
EVENSEN G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research, 1994, 99(C5): 10143-10162. doi: 10.1029/94JC00572
|
[18] |
HOMMELS A, MURAKAMI A, NISHIMURA S I. Comparison of the Ensemble Kalman Filter with the Unscented Kalman Filter: Application to the Construction of A Road Embankment[M]. 19th European Young Geotechnical Engineers Conference, 2008, Gyor.
|
[19] |
LIU K, VARDON P J, HICKS M A. Sequential reduction of slope stability uncertainty based on temporal hydraulic measurements via the ensemble Kalman filter[J]. Computers and Geotechnics, 2018, 95: 147-161. doi: 10.1016/j.compgeo.2017.09.019
|
[20] |
TAO Y, SUN H, CAI Y. Predicting soil settlement with quantified uncertainties by using ensemble Kalman filtering[J]. Engineering Geology, 2020, 276: 105753. doi: 10.1016/j.enggeo.2020.105753
|
[21] |
EMERICK A A, REYNOLDS A C. History matching time-lapse seismic data using the ensemble Kalman filter with multiple data assimilations[J]. Computational Geosciences, 2012, 16(3): 639-659.
|
[22] |
ZHANG X, XIAO H, GOMEZ T, COUTIER-DELGOSHA O. Evaluation of ensemble methods for quantifying uncertainties in steady-state CFD applications with small ensemble sizes[J]. Computers & Fluids, 2020, 203: 104530.
|
[23] |
WANG D, CHEN Y, CAI X. State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter[J]. Water Resources Research, 2009, 45: 10.1029.
|
[24] |
ZHANG X L, MICHEL N, STR FER C, XIAO H. Regularized ensemble Kalman methods for inverse problems[J]. Journal of Computational Physics, 2020, 416: 109517.
|
[25] |
WU J, WANG J X, SHADDEN S C. Adding constraints to bayesian inverse problems[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33: 1666-1673.
|
[26] |
VRUGT J A. Markov chain Monte Carlo simulation using the DREAM software package: theory, concepts, and MATLAB implementation[J]. Environmental Modelling & Software, 2016, 75: 273-316.
|
[27] |
李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004: 253-254.
LI Guang-xin. Advanced Soil Mechanics[M]. Beijing: Tsinghua University Press, 2004: 253-254. (in Chinese)
|
[28] |
AZZOUZ A S, KRIZEK R J, COROTIS R B. Regression analysis of soil compressibility[J]. Soils & Foundations, 1976, 16(2): 19-29.
|
[29] |
何平, 王卫东, 徐中华. 上海黏土压缩指数和回弹指数经验关系[J]. 岩土力学, 2018, 39(10): 275-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810035.htm
HE Ping, WANG Wei-dong, XU Zhong-hua. Empirical correlations of compression index and swelling index for Shanghai clay[J]. Rock and Soil Mechanics, 2018, 39(10): 275-284. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810035.htm
|
[30] |
武朝军. 上海浅部土层沉积环境及其物理力学性质[D]. 上海: 上海交通大学, 2016.
WU Chao-jun. Depositional Environment and Geotechnical Properties for the Upper Shanghai Clays[D]. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese)
|
[1] | SONG Chao, ZHAO Tengyuan, XU Ling. Estimation of uniaxial compressive strength based on fully Bayesian Gaussian process regression and model selection[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1664-1673. DOI: 10.11779/CJGE20220734 |
[2] | CHEN Si-yu, ZHANG Ga. Quality evaluation for measured data of slope displacement based on its spatial distribution[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 845-850. DOI: 10.11779/CJGE202205007 |
[3] | YU Yong-tang, ZHENG Jian-guo, ZHANG Ji-wen, HUANG Xin, XU Wen-tao. Prediction of settlement based on fusion model of Kalman filter and exponential smoothing algorithm[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 127-131. DOI: 10.11779/CJGE2021S1023 |
[4] | LIU Xiao-yan, CAI Guo-jun, ZOU Hai-feng, LI Xue-peng, LIU Song-yu. Prediction of stress history and strength of cohesive soils based on CPTU and data fusion techniques[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1270-1278. DOI: 10.11779/CJGE201907011 |
[5] | YU Jun, GONG Xiao-nan, LI Yuan-hai. Deformation characteristics of deep excavations based on mass data[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 319-324. DOI: 10.11779/CJGE2014S2056 |
[6] | XU Yang-qing, CHENG Lin. Analysis processing of monitoring data and forecast and early warning system of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk1): 219-224. DOI: 10.11779/CJGE2014S1038 |
[7] | HU Xiong-wu, ZHANG Ping-song, WU Rong-xin, LI Pei-gen, FU Mao-ru. All-time data analysis of transient electromagnetic method for tunnels and investigation on 1∶1 water model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2103-2109. DOI: 10.11779/CJGE201411017 |
[8] | WU Wei-gao, HUANG Zhong-hui, JIN Lei-ming, ZHU Yan-fei, WANG Jian-hua. Risk analysis and warning in excavation engineering based on data dependency[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 233-237. |
[9] | JING Yanlin, WU Yanqing. Data mining system of loess mechanics[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1154-1158. |
[10] | JIN Xin, SHEN Zhujiang, LIU Chongru. Data processing of geotechnical experiment using MATLAB[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 272-275. |
1. |
汪明元,陈松庭,陈彪,曾少翔. 考虑数据预处理和特征选择的静力触探参数研究. 浙江工业大学学报. 2025(01): 15-21 .
![]() | |
2. |
陈海鹏,周庆琨,林细旗,俞松明,唐必循. 考虑节理裂隙的隧道开挖响应分析. 安徽建筑. 2025(01): 158-160 .
![]() | |
3. |
汪明元,王振红,陈松庭. 基于LightGBM算法的海洋土压缩参数预测模型. 浙江工业大学学报. 2024(01): 17-24 .
![]() | |
4. |
汪明元,陈松庭,王耿鑫,彭成威,李欣益. 多源数据融合的土性参数预测方法. 浙江工业大学学报. 2024(04): 430-436 .
![]() | |
5. |
周康敏,程康,曾少翔,丁智,余颂,冯治国. 基于深度残差LSTM的盾构姿态预测. 隧道建设(中英文). 2024(08): 1643-1651 .
![]() | |
6. |
薛飞,徐建,许迎顺,吴坚,郭平,曾少翔,肖方初,李泽华. 基于核函数支持向量回归的盾构姿态预测方法. 浙江工业大学学报. 2024(05): 492-498 .
![]() | |
7. |
刘建平,冯治国,余颂,戚雯璐,陈松庭. 基于CPTU数据的海洋土土体分层研究. 河南科学. 2024(10): 1443-1449 .
![]() | |
8. |
吕飞华,杜坤,刘建英,韩嘉佳,姬心语. 顶管掘进引起的既有隧道变形和地表沉降多目标优化及预测. 现代隧道技术. 2024(S1): 552-559 .
![]() | |
9. |
田志尧,宫全美,赵昱,周顺华. 基于完全贝叶斯估计的在役地下结构荷载随机反演方法. 同济大学学报(自然科学版). 2023(03): 367-374+461 .
![]() | |
10. |
汪明元,张国,潘孙珏徐,陶袁钦. 基于集合卡尔曼滤波的海洋土孔隙率预测研究. 工业建筑. 2023(06): 37-42 .
![]() | |
11. |
吴坚,曾志全,张亚鹏,刘龙,杨长松,曾少翔. 基于循环神经网络的盾构姿态及掘进参数预测. 浙江工业大学学报. 2023(06): 663-670 .
![]() | |
12. |
张军波,费杰,周张见,汪轮,虞梦菲. 基于KJHH模型的基坑开挖概率反分析方法. 浙江工业大学学报. 2023(06): 671-676+698 .
![]() | |
13. |
张晋彰,黄宏伟,张东明,方国光,唐冲. 考虑参数空间变异性的隧道结构变形分析简化方法. 岩土工程学报. 2022(01): 134-143+205-206 .
![]() |