• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Xiao-yan, CAI Guo-jun, ZOU Hai-feng, LI Xue-peng, LIU Song-yu. Prediction of stress history and strength of cohesive soils based on CPTU and data fusion techniques[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1270-1278. DOI: 10.11779/CJGE201907011
Citation: LIU Xiao-yan, CAI Guo-jun, ZOU Hai-feng, LI Xue-peng, LIU Song-yu. Prediction of stress history and strength of cohesive soils based on CPTU and data fusion techniques[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1270-1278. DOI: 10.11779/CJGE201907011

Prediction of stress history and strength of cohesive soils based on CPTU and data fusion techniques

More Information
  • Received Date: May 03, 2018
  • Published Date: July 24, 2019
  • The overconsolidation ratio (OCR) and the undrained shear strength (Su) are the basic mechanical parameters of soils, which can influence the deformation analysis and strength calculation of soils. A prediction model for OCR and Su of typical clay in Jiangsu Province is proposed by using the data fusion technique and the data of piezocone penetration test (CPTU). The feasibility of the prediction model is analyzed by using the feature-level data fusion techniques (regression tree, model tree) and decision-level data fusion techniques (bagging, stacking). The predicted OCR and Su, the reference values obtained by the laboratory tests and the estimated values obtained by the existing calculation methods are compared and analyzed. The results show that the predicted results of the model tree are better than those of the regression tree. The decision and fusion algorithms can improve the predicted results of the regression tree, but they have little influences on the predicted results of the model tree. The superimposed regression tree and model tree can make the predicted Su better than that of the regression tree, but worse than that of the model tree. For several data fusion models, the predicted OCR is approximately close. The regression tree model is slightly better than other data fusion models in predicting the OCR. Compared with other prediction methods, the data fusion model can better predict the OCR and Su.
  • [1]
    钱永兰, 杨邦杰, 雷廷武. 数据融合及其在农情遥感监测中的应用与展望[J]. 农业工程学报, 2004, 20(4): 286-290.
    (QIAN Yong-lan, YANG Bang-jie, LEI Ting-wu.Data fusion and its application prospect in agricultural condition monitoring using romote sensing[J]. Transactions of the CSAE, 2004, 20(4): 286-290. (in Chinese))
    [2]
    周四望, 林亚平, 聂雅琳, 等. 无线传感器网络中基于数据融合的移动代理曲线动态路由算法研究[J]. 计算机学报, 2007(6): 894-904.
    (ZHOU Si-wang, LIN Ya-ping, NIE Ya-lin, et al.A study of trajectory-based mobile agent dynamic routes algorithm for data fusion in wireless sensor networks[J]. Chinese Journal of Computers, 2007(6): 894-904. (in Chinese))
    [3]
    刘明贵, 杨永波. 信息融合技术在边坡监测与预报系统中的应用[J]. 岩土工程学报, 2005, 27(5): 607-610.
    (LIU Ming-gui, YANG Yong-bo.Application of information fusion in slope monitoring and prediction system Chinese[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 607-610. (in Chinese))
    [4]
    GRIFFIN E P, KURUP P U.Prediction of OCR and su from PCPT data using tree-based data fusion techniques[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(9): 04017045.
    [5]
    陈昌彦, 王思敬, 沈小克. 边坡岩体稳定性的人工神经网络预测模型[J]. 岩土工程学报, 2001, 23(2): 157-161.
    (CHEN Chang-yan, WANG Si-jing, SHEN Xiao-ke.Predicting models to estimate stability of rock slope based on artificial neural network[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 157-161. (in Chinese))
    [6]
    赵忠杰, 田梅. 数据融合技术在公路隧道火灾探测中的应用[J]. 西安科技大学学报, 2007, 23(3): 435-438.
    (ZHAO Zhong-jie, TIAN Mei.Application of data fusion technology to highway tunnels fire detection[J]. Journal of Xi'an University of Science and Technology, 2007, 23(3): 435-438. (in Chinese))
    [7]
    刘松玉, 蔡国军, 邹海峰. 基于CPTU 的中国实用土分类方法研究[J]. 岩土工程学报, 2013, 35(10): 1765-1776.
    (LIU Song-yu, CAI Guo-jun, ZOU Hai-feng.Practical soil classification methods in China based on piezocone penetration tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1765-1776. (in Chinese))
    [8]
    SENNESET K, JANBU N, SVANO G.Strength and deformation parameters for CPT[C]// Proceedings of the 2nd European Symposium on Penetration Testing, Amsterdam, 1982: 863-870.
    [9]
    LUNNE T, CHRISTOFFERSEN H P, TJELTA T I.Engineering use of piezocone data in North Sea clays[C]// Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering. Rotterdam, 1985.
    [10]
    TONG L, WANG Q, DU G, et al.Determination of undrained shear strength using piezocone penetration test in clayey soil for bridge foundation[J]. Journal of Southeast University, 2011, 27(2): 201-205.
    [11]
    LI X, CAI G, LIU S, et al.Undrained shear strength and pore pressure changes due to prestress concrete pile installation in soft clay[J]. International Journal of Civil Engineering, 2019, 17(2): 193-203.
    [12]
    MAYNE P W.Determination of OCR in clays by piezocone tests using cavity expansion and critical state concepts[J]. Soils and Foundations, 1991, 31(2): 65-76.
    [13]
    CHEN B S Y, MAYNE P W. Profiling the OCR of clays by piezocone tests tests[R]. Atlanta: Georgia Institute of Technology, 1994.
    [14]
    刘松玉, 蔡国军, 童立元, 等. 基于CPTU 测试的先期固结压力确定方法试验研究[J]. 岩土工程学报, 2007, 29(4): 490-495.
    (LIU Song-yu, CAI Guo-jun, TONG Li-yuan, et al.On preconsolidation pressure of clays from piezocone tests[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 490-495. (in Chinese))
    [15]
    LUNNE T, ROBERTSON P K, POWELL J M.Cone penetration testing in geotechnical practice[M]. London: Blackie Academic & Professional, 1997: 16-24.
    [16]
    HALL D L, MCMULLEN S A H. Mathematical techniques in multi-sensor data fusion[M]. Boston: Artech House, 2004.
    [17]
    CAI G, PUPPALA A J, LIU S.Characterization on the correlation between shear wave velocity and piezocone tip resistance of Jiangsu clays[J]. Engineering Geology, 2014, 171(13): 96-103.
    [18]
    CAI G, LIU S, PUPPALA A J.Comparison of CPT charts for soil classification using PCPT data: example from clay deposits in Jiangsu Province, China[J]. Engineering Geology, 2011, 121(1/2): 89-96.
    [19]
    ZOU H, LIU S, CAI G, et al.Multivariate correlation analysis of seismic piezocone penetration (SCPTU) parameters and design properties of Jiangsu quaternary cohesive soils[J]. Engineering Geology, 2017, 228(1/2): 11-38.
    [20]
    LIU H, MOTODA H.Feature extraction, construction and selection: a data mining perspective[M]. Amsterdam: Kluwer Academic Publishers, 1998.
    [21]
    CHEN B S Y, MAYNE P W. Statistical relationships between piezocone measurements and stress history of clays[J]. Canadian Geotechnical Journal, 1996, 33(3): 488-498.
  • Cited by

    Periodical cited type(8)

    1. 王才进,武猛,杨洋,何欢,蔡国军,刘薛宁,刘松玉. 基于CPTU测试的高速公路扩建地基软土参数空间变异性研究. 中国公路学报. 2024(02): 197-208 .
    2. 王新龙,聂利青,蔡国军,张宁,赵泽宁,刘薛宁,宋登辉. 基于孔压静力触探技术的SVR优化算法评估土体液性指数. 岩土力学. 2024(S1): 645-653 .
    3. 周瑞荣,李浩,肖兴,周逸枫,吴琪. 长江漫滩相超固结软土最大动剪切模量试验研究. 震灾防御技术. 2024(03): 478-485 .
    4. 加瑞,赵栋,雷华阳. 黏土结构性对孔压静力触探结果的影响分析. 水文地质工程地质. 2023(05): 80-88 .
    5. 赵学亮,徐春喆,郭鹏,李宇,张友虎,陈亮. 基于CPTU的黏性土超固结比计算方法的对比分析. 东南大学学报(自然科学版). 2023(06): 1044-1052 .
    6. 王钰轲,冯爽,钟燕辉,张蓓. 基于集成学习模型的正常固结土抗剪强度指标预测方法. 岩土工程学报. 2023(S2): 183-188 . 本站查看
    7. 赵泽宁,段伟,蔡国军,刘松玉,常建新,冯华磊. 基于机器学习CPTU智能算法的黏性土应力历史评价. 岩土工程学报. 2021(S2): 104-107 . 本站查看
    8. 赵俊杰. 基于数据融合技术的液压支架故障诊断专家系统设计. 自动化应用. 2019(11): 65-66 .

    Other cited types(2)

Catalog

    Article views (232) PDF downloads (152) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return