Citation: | ZHAO Ze-ning, DUAN Wei, CAI Guo-jun, LIU Song-yu, CHANG Jian-xin, FENG Hua-lei. Evaluation of stress history of clays based on intelligent CPTU machine learning algorithm[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 104-107. DOI: 10.11779/CJGE2021S2025 |
[1] |
MAYNE P W. Determination of OCR in clays by piezocone tests using cavity expansion and critical state concepts[J]. Soils and Foundations, 1991, 31(2): 65-76. doi: 10.3208/sandf1972.31.2_65
|
[2] |
刘晓燕, 蔡国军, 邹海峰, 等. 基于CPTU数据融合技术的黏性土应力历史与强度特性评价研究[J]. 岩土工程学报, 2019, 41(7): 1270-1278. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907013.htm
LIU Xiao-yan, CAI Guo-jun, ZOU Hai-feng, et al. Prediction of stress history and strength of cohesive soils based on CPTU and data fusion techniques[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1270-1278. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907013.htm
|
[3] |
ZHAO Z N, DUAN W, CAI G J. A novel PSO-KELM based soil liquefaction potential evaluation system using CPT and Vs measurement[J]. Soil Dynamics and Earthquake Engineering, 2021(150): 106930.
|
[4] |
LUNNE T, POWELL J J M, ROBERTSON P K. Cone Penetration Testing in Geotechnical Practice[M]. CRC Press, 2002.
|
[5] |
ROBERTSON P K. Interpretation of cone penetration tests—a unified approach[J]. Canadian Geotechnical Journal, 2009, 46(11): 1337-1355. doi: 10.1139/T09-065
|
[6] |
GOH A T C, ZHANG W G. An improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splines[J]. Engineering Geology, 2014, 170(3): 1-10.
|
[7] |
KAYA Z. Predicting liquefaction-induced lateral spreading by using neural network and neuro-fuzzy techniques[J]. International Journal of Geomechanics, 2016, 16(4): 04015095. doi: 10.1061/(ASCE)GM.1943-5622.0000607
|
[8] |
ZHANG W G, GOH A T C, ZHANG Y M, et al. Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines[J]. Engineering Geology, 2015, 188: 29-37. doi: 10.1016/j.enggeo.2015.01.009
|
[9] |
ZHANG W G, GOH A T C. Multivariate adaptive regression splines and neural network models for prediction of pile drivability[J]. Geoscience Frontiers, 2016, 7(1): 45-52. doi: 10.1016/j.gsf.2014.10.003
|
[10] |
MOAYEDI H, RAFTARI M, SHARIFI A, et al. Optimization of ANFIS with GA and PSO estimating α ratio in driven piles[J]. Engineering With Computers, 2020, 36(1): 227-238. doi: 10.1007/s00366-018-00694-w
|
[11] |
ZOU H F, LIU S Y, CAI G J, et al. Multivariate correlation analysis of seismic piezocone penetration (SCPTU) parameters and design properties of Jiangsu quaternary cohesive soils[J]. Engineering Geology, 2017, 228(1/2): 11-38.
|
[12] |
SY CHEN B, MAYNE P W. Statistical relationships between piezocone measurements and stress history of clays[J]. Canadian Geotechnical Journal, 1996, 33(3): 488-498. doi: 10.1139/t96-070
|
[1] | ZHAO Futang, WU Qixin, ZHENG Junjie, ZHENG Yewei. Generalized shear strain-based model for development of excess pore water pressure in saturated sand under anisotropic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 315-323. DOI: 10.11779/CJGE20231122 |
[2] | TANG Zhao-guang, WANG Yong-zhi, WANG Meng-wei, SUN Rui, LIU Yuan-peng, YANG yang. Incremental model for pore water pressure and its applicability in centrifuge modelling[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 25-29. DOI: 10.11779/CJGE2022S2006 |
[3] | WANG Zhi-hua, HE Jian, GAO Hong-mei, WANG Bing-hui, SHEN Ji-rong. Dynamic pore water pressure model for liquefiable soils based on theory of thixotropic fluid[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2332-2340. DOI: 10.11779/CJGE201812023 |
[4] | WANG Xiang-ying, LIU Han-long, JIANG Qiang, CHEN Yu-min. Field tests on response of excess pore water pressures of liquefaction resistant rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 645-651. DOI: 10.11779/CJGE201704008 |
[5] | CAO Zhen-zhong, LIU Hui-da, YUAN Xiao-ming. Liquefaction characteristics and mechanism of gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1165-1174. DOI: 10.11779/CJGE201607001 |
[6] | ZHOU En-quan, WANG Zhi-hua, CHEN Guo-xing, LÜ Cong. Constitutive model for fluid of post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 112-118. DOI: 10.11779/CJGE201501013 |
[7] | WANG Zhi-hua, LÜ Cong, XU Zhen-wei, ZHOU En-quan, CHEN Guo-xing. Thixotropy induced by vibration pore water pressure of saturated sands under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1831-1837. DOI: 10.11779/CJGE201410010 |
[8] | WANG Jun, CAI Yuan-qiang, GUO Lin, YANG Fang. Pore pressure and strain development of Wenzhou saturated soft soil under cyclic loading by stages[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1349-1354. |
[9] | WANG Zhi-hua, ZHOU En-quan, CHEN Guo-xing. Fluid characteristics dependent on excess pore water pressure of saturated sand after growth of pore pressure[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 528-533. |
[10] | CHEN Guoxing, LIU Xuezhu. Study on dynamic pore water pressure in silty clay interbedded with fine sand of Nanjing[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 79-82. |