Citation: | ZHU Jun-gao, ZHU Cai-feng, WANG Si-rui. Experimental study on embedding amount of rubber film of triaxial specimens of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2160-2166. DOI: 10.11779/CJGE202212002 |
[1] |
柏树田, 周晓光, 晁华怡. 应力路径对堆石变形特性的影响[J]. 水力发电学报, 1999, 18(4): 76–80. doi: 10.3969/j.issn.1003-1243.1999.04.009
BAI Shu-tian, ZHOU Xiao-guang, CHAO Hua-yi. Effects of stress path on the deformation of rockfill materials[J]. Journal of Hydroelectric Engineering, 1999, 18(4): 76–80. (in Chinese) doi: 10.3969/j.issn.1003-1243.1999.04.009
|
[2] |
张丙印, 吕明治, 高莲士. 粗粒料大型三轴试验中橡皮膜嵌入量对体变的影响及校正[J]. 水利水电技术, 2003, 34(2): 30–33, 67. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ200302010.htm
ZHANG Bing-yin, LÜ Ming-zhi, GAO Lian-shi. Correction of membrane penetration in large-scale triaxial tests for granular materials[J]. Water Resources and Hydropower Engineering, 2003, 34(2): 30–33, 67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ200302010.htm
|
[3] |
NEWLAND P L, ALLELY B H. Volume changes during undrained triaxial tests on saturated dilatant granular materials[J]. Géotechnique, 1959, 9(4): 174–182. doi: 10.1680/geot.1959.9.4.174
|
[4] |
SELIG E T, VAID Y P, NEGUSSEY D. A critical assessment of membrane penetration in the triaxial test[J]. Geotechnical Testing Journal, 1984, 7(2): 70. doi: 10.1520/GTJ10595J
|
[5] |
BANERJEE N G. Cyclic behavior of dense coarse-grained materials in relation to the seismic stability of dams[J]. UCB/EERC-79/13, 1979.
|
[6] |
ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A. An evaluation of test data for selecting a yield criterion for soils[M]. West Conshohocken: ASTM International, 1964.
|
[7] |
ETRIS S F, LIEB K C, SISCA V K, et al. The membrane effect in triaxial testing of granular soils[J]. Journal of Testing and Evaluation, 1973, 1(1): 37. doi: 10.1520/JTE11599J
|
[8] |
SEED R B, ANWAR H. Development of a Laboratory Technique for Correcting Results of Undrained Triaxial Shear Tests on Soils Containing Coarse Particles for Effects of Membrane Compliance[R]. Palo Alto: Tanford Univ Calif Dept of Civil Engineering, 1987.
|
[9] |
吉恩跃, 朱俊高, 王青龙, 等. 粗颗粒土橡皮膜嵌入试验研究[J]. 岩土工程学报, 2018, 40(2): 346–352. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17290.shtml
JI En-yue, ZHU Jun-gao, WANG Qing-long, et al. Experiment of membrane penetration on coarse grained soil[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 346–352. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17290.shtml
|
[10] |
KIEKBUSCH M, SCHUPPENER B. Membrane penetration and its effect on pore pressures[J]. Journal of the Geotechnical Engineering Division, 1977, 103(11): 1267–1279. doi: 10.1061/AJGEB6.0000519
|
[11] |
刘荟达, 袁晓铭, 王鸾, 等. 宽级配砾性土橡皮膜嵌入量计算新方法[J]. 岩石力学与工程学报, 2020, 39(4): 804–816. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004014.htm
LIU Hui-da, YUAN Xiao-ming, WANG Luan, et al. A new calculation method for membrane penetration in wide-graded gravelly soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 804–816. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004014.htm
|
[12] |
孙益振, 邵龙潭, 王助贫, 等. 基于数字图像测量系统的砂砾土试样膜嵌入问题研究[J]. 岩石力学与工程学报, 2006, 25(3): 618–622. doi: 10.3321/j.issn:1000-6915.2006.03.028
SUN Yi-zhen, SHAO Long-tan, WANG Zhu-pin, et al. Study on membrane penetration in sandy soil specimens based on digital image measurement system[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(3): 618–622. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.03.028
|
[13] |
RAJU V S. Undrained triaxial tests to assess liquefaction potential of sands-Effect of membrane penetration[C]//Proc International Symposium on Soil under Cyclic and Transient Loading. Swansea, 1980: 483–494.
|
[14] |
NICHOLSON P G, SEED R B, ANWAR H A. Elimination of membrane compliance in undrained triaxial testing: I measurement and evaluation[J]. Canadian Geotechnical Journal, 1993, 30(5): 727–738. doi: 10.1139/t93-065
|
[15] |
TANAKA Y, KOKUSHO T, YOSHIDA Y, et al. A method for evaluating membrane compliance and system compliance in undrained cyclic shear tests[J]. Soils and Foundations, 1991, 31(3): 30–42. doi: 10.3208/sandf1972.31.3_30
|
[16] |
朱俊高, 陆阳洋, 蒋明杰, 等. 新型静止侧压力系数试验仪的研制与应用[J]. 岩土力学, 2018, 39(8): 3071–3076. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808043.htm
ZHU Jun-gao, LU Yang-yang, JIANG Ming-jie, et al. Development and application of new apparatus for K0 test[J]. Rock and Soil Mechanics, 2018, 39(8): 3071–3076. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808043.htm
|
[17] |
TOKIMATSU K, NAKAMURA K. A simplified correction for membrane compliance in liquefaction tests[J]. Soils and Foundations, 1987, 27(4): 111–122. doi: 10.3208/sandf1972.27.4_111
|
[18] |
BALDI G, NOVA R. Membrane penetration effects in triaxial testing[J]. Journal of Geotechnical Engineering, 1984, 110(3): 403–420. doi: 10.1061/(ASCE)0733-9410(1984)110:3(403)
|
[19] |
吉恩跃, 朱俊高, 余挺, 等. 橡皮膜嵌入解析解及试验验证[J]. 岩土力学, 2018, 39(8): 2780–2786. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808009.htm
JI En-yue, ZHU Jun-gao, YU Ting, et al. Analytic solution and test validation of membrane penetration[J]. Rock and Soil Mechanics, 2018, 39(8): 2780–2786. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808009.htm
|
[20] |
KRAMER S, SIVANESWARAN N. A nondestructive, specimen-specific method for measurement of membrane penetration in the triaxial test[J]. Geotechnical Testing Journal, 1989, 12: 50–59.
|
[21] |
KRAMER S L, SIVANESWARAN N, DAVIS R O. Analysis of membrane penetration in triaxial test[J]. Journal of Engineering Mechanics, 1990, 116(4): 773–789.
|
[22] |
MOLENKAMP F, LUGER H J. Modelling and minimization of membrane penetration effects in tests on granular soils[J]. Géotechnique, 1981, 31(4): 471–486.
|
[23] |
王思睿. 粗颗粒土三轴试验橡皮膜嵌入量研究[D]. 南京: 河海大学, 2020.
WANG Si-rui. Research on Rubber Film Embedding Amount in Triaxial Test of Coarse-Grained Soil [D]. Nanjing: Hohai University, 2020. (in Chinese)
|
[1] | LIANG Xiaomin, GU Xiaoqiang, ZHAI Chongpu, WEI Deheng. Anisotropic wave velocities of granular materials and microscopic fabric using X-ray computed tomography[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1398-1407. DOI: 10.11779/CJGE20230425 |
[2] | ZHANG He-nian, CHEN Liang, LI Xiong-wei, XI Pei-sheng, MU Lin, HU Cai-yun. Ratio and mechanism of activated magnesium oxide carbonized raw earth block materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 233-236. DOI: 10.11779/CJGE2021S2055 |
[3] | YAO Jun-kai, YE Yang-sheng, WANG Peng-cheng, CHEN Feng, CAI De-gou. Subgrade heave of sulfate attacking on cement-stabilized filler[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 782-788. DOI: 10.11779/CJGE201904024 |
[4] | XU Xiao-li, GAO Feng, ZHANG Zhi-zhen, ZHANG Chuan-hu. Energy and structural effects of granite after high temperature[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 961-968. DOI: 10.11779/CJGE201405022 |
[5] | ZHOU Qiao-yong, XIONG Bao-lin, YANG Guang-qing, LIU Wei-chao. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 439-444. |
[6] | YU Hui, DING Xuan-ming, KONG Gang-qiang, ZHENG Chang-jie. Comparative FEM analysis of deformation properties of expressway widening projects with cast-in-situ X-shaped concrete piles and circular pile[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 170-176. |
[7] | WANG Cheng-hu, WANG Hong-cai, LIU Li-peng, SUN Dong-sheng, ZHAO Wei-hua. Effects of high temperatures on mechanical performance of basaltic tuff and mechanism analysis[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1827-1835. |
[8] | Micro-experiments on a soft ground improved by cement-mixed soils with gypsum additive[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8). |
[9] | Full scale model tests on vertical bearing characteristics of cast-in-place X-section piles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6). |
[10] | WU Yanqing, CAO Guangzhu, DING Weihua. Permeability experiment of sandstone under variable seepage pressures by using X-ray CT real-time observation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 780-785. |
1. |
王大兵,黄郁东,韩振中,徐考,崔文海,周苏华. 基于贝叶斯逻辑回归模型的边坡稳定性预测. 市政技术. 2023(10): 173-180 .
![]() | |
2. |
曾锃,赵树祥,葛龙进,潘卫平,李敏,殷国峰. 罗闸河二级水电站拱坝右岸边坡变形破坏机制研究及治理后评估. 岩土工程学报. 2021(S1): 171-175 .
![]() | |
3. |
夏增选,李萍,曹博,李同录,沈伟,康海伟. 边坡可靠度的Bayes估计及后验稳健性. 河海大学学报(自然科学版). 2020(03): 238-244 .
![]() | |
4. |
谢永利,刘新荣,晏长根,杨忠平,李家春,周志军,岳夏冰. 特殊岩土体工程边坡研究进展. 土木工程学报. 2020(09): 93-105 .
![]() |