• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Xiao, DING Zhi, WANG Zhen, XIA Tang-dai. Transverse deformations and internal forces of tunnel segments caused by construction of steel casings of bridge piles[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2052-2062. DOI: 10.11779/CJGE202211011
Citation: ZHANG Xiao, DING Zhi, WANG Zhen, XIA Tang-dai. Transverse deformations and internal forces of tunnel segments caused by construction of steel casings of bridge piles[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2052-2062. DOI: 10.11779/CJGE202211011

Transverse deformations and internal forces of tunnel segments caused by construction of steel casings of bridge piles

More Information
  • Received Date: October 17, 2021
  • Available Online: December 08, 2022
  • In order to reasonably evaluate the health status and long-term service performance of tunnel structures under the construction influences of bridge piles, it is necessary to conduct an in-depth study on the transverse force and deformation characteristics of the tunnel segments. Based on the results of the additional stress under construction of a bridge pile, firstly a formula for calculating the additional confining pressure considering the stiffness of the existing tunnel is proposed, and the additional confining pressure distribution of the tunnel is obtained during the construction of the steel casing of the bridge pile. Then, based on the shell-spring model, a three-dimensional numerical simulation of the segment is established, and the laws of the transverse deformation and internal force of the tunnel segments are discussed. Finally, a method for identifying the rotation behavior of the tunnel is defined, and the performance index of the local deflection of the segment is proposed. The results show the calculated results are more consistent with the measured data. As the construction depth of the steel casing of the bridge pile increases, the tunnel moves to the left firstly and then tilts to the right, which eventually leads to the overall settlement and the "vertical ellipse" deformation of the tunnel as a whole. After the bridge pile is constructed to the depth of the tunnel axis, the tunnel convergence changes drastically and enters the difficult-to-control phase of the development of the lateral deformation of the tunnel. The zero value of bending moment and the maximum value of shear force are mostly located at the joints of the adjacent segments, so the joints with larger shear force are more prone to diseases such as misalignment, water leakage, etc. During the construction of the steel casing of the bridge pile, the tunnel segments have undergone a transition from clockwise rotation to counterclockwise one, and the critical point is in the range of 0.85D below the buried depth of the tunnel axis.
  • [1]
    丁智, 张霄, 周联英, 等. 近距离桥桩与地铁隧道相互影响研究及展望[J]. 浙江大学学报(工学版), 2018, 52(10): 1943–1953, 1979. doi: 10.3785/j.issn.1008-973X.2018.10.014

    DING Zhi, ZHANG Xiao, ZHOU Lian-ying, et al. Research and prospect of interaction between close bridge pile and metro tunnel[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(10): 1943–1953, 1979. (in Chinese) doi: 10.3785/j.issn.1008-973X.2018.10.014
    [2]
    庄妍, 牟凡, 崔晓艳, 等. 全套管灌注桩在临近地铁隧道的暗桥桩基工程中的应用[J]. 岩土工程学报, 2015, 37(增刊2): 41–45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2010.htm

    ZHUANG Yan, MU Fan, CUI Xiao-yan, et al. Application of Benoto pile in concealed bridge piled project near subway[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 41–45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2010.htm
    [3]
    黄大维, 周顺华, 刘重庆, 等. 护壁套管钻孔灌注桩微扰动施工分析[J]. 岩土力学, 2013, 34(4): 1103–1108. doi: 10.16285/j.rsm.2013.04.016

    HUANG Da-wei, ZHOU Shun-hua, LIU Chong-qing, et al. Analysis of small disturbing construction of protective jacket tube for cast-in-situ bored pile[J]. Rock and Soil Mechanics, 2013, 34(4): 1103–1108. (in Chinese) doi: 10.16285/j.rsm.2013.04.016
    [4]
    ZHANG Y M, WANG H, MAO J X, et al. Monitoring-based assessment of the construction influence of Benoto pile on adjacent high-speed railway bridge: case study[J]. Journal of Performance of Constructed Facilities, 2019, 33(1): 04018106. doi: 10.1061/(ASCE)CF.1943-5509.0001258
    [5]
    丁智, 何奇威, 叶星宇, 等. 桥桩施工对邻近既有地铁隧道影响实测研究[J]. 铁道工程学报, 2018, 35(9): 80–87. doi: 10.3969/j.issn.1006-2106.2018.09.014

    DING Zhi, HE Qi-wei, YE Xing-yu, et al. Research on the influence of bridge pile construction on adjacent existing metro tunnels[J]. Journal of Railway Engineering Society, 2018, 35(9): 80–87. (in Chinese) doi: 10.3969/j.issn.1006-2106.2018.09.014
    [6]
    丁智, 王永安, 虞兴福, 等. 近距离桥桩施工对地铁隧道影响监测分析[J]. 现代隧道技术, 2016, 53(1): 173–179, 186. doi: 10.13807/j.cnki.mtt.2016.01.026

    DING Zhi, WANG Yong-an, YU Xing-fu, et al. Monitoring and analysis of the impact of adjacent bridge pile construction on subway tunnels[J]. Modern Tunnelling Technology, 2016, 53(1): 173–179, 186. (in Chinese) doi: 10.13807/j.cnki.mtt.2016.01.026
    [7]
    徐云福, 王立峰. 近邻桩基施工对城市地铁隧道的影响分析[J]. 岩土力学, 2015, 36(增刊2): 577–582. doi: 10.16285/j.rsm.2015.S2.081

    XU Yun-fu, WANG Li-feng. Analysis of effects on city metro tunnel due to adjacent pile foundation construction[J]. Rock and Soil Mechanics, 2015, 36(S2): 577–582. (in Chinese) doi: 10.16285/j.rsm.2015.S2.081
    [8]
    YOO C. Three-dimensional numerical investigation on the effect of bridge construction on existing tunnel[J]. KSCE Journal of Civil Engineering, 2014, 18(3): 794–802. doi: 10.1007/s12205-014-0361-1
    [9]
    路平, 郑刚. 立交桥桩基础施工及运营期对既有隧道影响的研究[J]. 岩土工程学报, 2013, 35(增刊2): 923–927. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2174.htm

    LU Ping, ZHENG Gang. Influence of construction and operation of pile foundation of overpass on existing tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 923–927. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2174.htm
    [10]
    LUEPRASERT P, JONGPRADIST P, CHAROENPAK K, et al. Three-dimensional finite element analysis for preliminary establishment of tunnel influence zone subject to pile loading[J]. Maejo International Journal of Science and Technology, 2015, 9(2): 209–223.
    [11]
    LUEPRASERT P, JONGPRADIST P, JONGPRADIST P, et al. Numerical investigation of tunnel deformation due to adjacent loaded pile and pile-soil-tunnel interaction[J]. Tunnelling and Underground Space Technology, 2017, 70: 166–181. doi: 10.1016/j.tust.2017.08.006
    [12]
    何川, 张景, 封坤. 盾构隧道结构计算分析方法研究[J]. 中国公路学报, 2017, 30(8): 1–14. doi: 10.3969/j.issn.1001-7372.2017.08.001

    HE Chuan, ZHANG Jing, FENG Kun. Research on structural analysis method of shield tunnels[J]. China Journal of Highway and Transport, 2017, 30(8): 1–14. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.08.001
    [13]
    村上博智, 小泉淳. シールドセグメントリングの耐荷机构について[C]//土木學會論文報告集, 1978, 272: 103– 115.

    MURAKAMI H, KOIZUMI A. Study on load bearing capacity and mechanics of shield segment ring[C]// Proceedings of the Japan Society of Civil Engineers, 1978, 272: 103–115. (in Japanese)
    [14]
    朱伟, 黄正荣, 梁精华. 盾构衬砌管片的壳–弹簧设计模型研究[J]. 岩土工程学报, 2006, 28(8): 940–947. doi: 10.3321/j.issn:1000-4548.2006.08.003

    ZHU Wei, HUANG Zheng-rong, LIANG Jing-hua. Studies on shell-spring design model for segment of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 940–947. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.08.003
    [15]
    彭益成, 丁文其, 朱合华, 等. 盾构隧道衬砌结构的壳-接头模型研究[J]. 岩土工程学报, 2013, 35(10): 1823–1829. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310009.htm

    PENG Yi-cheng, DING Wen-qi, ZHU He-hua, et al. Shell-joint model for lining structures of shield-driven tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1823–1829. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310009.htm
    [16]
    黄大维, 周顺华, 赖国泉, 等. 地表超载作用下盾构隧道劣化机理与特性[J]. 岩土工程学报, 2017, 39(7): 1173–1181. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201707003.htm

    HUANG Da-wei, ZHOU Shun-hua, LAI Guo-quan, et al. Mechanisms and characteristics for deterioration of shield tunnels under surface surcharge[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1173–1181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201707003.htm
    [17]
    郑刚, 崔涛, 程雪松, 等. 侧部松动情况下盾构隧道横向变形特征研究[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(12): 1304–1313. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201712013.htm

    ZHENG Gang, CUI Tao, CHENG Xue-song, et al. Transverse deformation of shield tunnel under lateral loosening conditions[J]. Journal of Tianjin University (Science and Technology), 2017, 50(12): 1304–1313. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201712013.htm
    [18]
    王如路, 张冬梅. 超载作用下软土盾构隧道横向变形机理及控制指标研究[J]. 岩土工程学报, 2013, 35(6): 1092–1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201306016.htm

    WANG Ru-lu, ZHANG Dong-mei. Mechanism of transverse deformation and assessment index for shield tunnels in soft clay under surface surcharge[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1092–1101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201306016.htm
    [19]
    丁智, 张霄, 张默爆, 等. 桥桩钢套管施工引起地铁隧道纵向变形计算研究[J]. 岩石力学与工程学报, 2022, 41(4): 836–848. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202204012.htm

    DING Zhi, ZHANG Xiao, ZHANG Mo-bao, et al. Computational research on longitudinal deformation of subway tunnels caused by steel casing construction of bridge piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(4): 836–848. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202204012.htm
    [20]
    黄大维, 周顺华, 宫全美, 等. 钢管压入土体施工挤土机制与案例分析[J]. 岩石力学与工程学报, 2013, 32(1): 176–183. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201301023.htm

    HUANG Da-wei, ZHOU Shun-hua, GONG Quan-mei, et al. Analysis of squeezing mechanism for jacked-in construction of steel pipe and project case[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(1): 176–183. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201301023.htm
    [21]
    张超, 杨龙才, 黄大维, 等. 钢套管施工对地铁隧道影响分析及变形控制研究[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3584–3591. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2075.htm

    ZHANG Chao, YANG Long-cai, HUANG Da-wei, et al. Effect of steel casing construction on metro tunnel and deformation control[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3584–3591. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2075.htm
    [22]
    MINDLIN R D. Force at a point in the interior of a semi-infinite solid[J]. Physics, 1936, 7(5): 195–202.
    [23]
    张治国, 黄茂松, 王卫东. 遮拦叠交效应下地铁盾构掘进引起地层沉降分析[J]. 岩石力学与工程学报, 2013, 32(9): 1750–1761. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201309005.htm

    ZHANG Zhi-guo, HUANG Mao-song, WANG Wei-dong. Analysis of ground settlements induced by subway shield excavation considering sheltering overlapped effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1750–1761. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201309005.htm
    [24]
    廖少明, 杨俊龙, 奚程磊, 等. 盾构近距离穿越施工的工作面土压力研究[J]. 岩土力学, 2005, 26(11): 1727–1730. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200511006.htm

    LIAO Shao-ming, YANG Jun-long, XI Cheng-lei, et al. Approach to earth balance pressure of shield tunneling across ultra-near metro tunnel in operation[J]. Rock and Soil Mechanics, 2005, 26(11): 1727–1730. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200511006.htm
    [25]
    黄大维, 周顺华, 冯青松, 等. 软土地区通缝拼装地铁盾构隧道管片纵缝接头的优化[J]. 中国铁道科学, 2017, 38(5): 62–69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201705011.htm

    HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, et al. Optimization for longitudinal segment joint of metro shield tunnel with straight joint in soft soil area[J]. China Railway Science, 2017, 38(5): 62–69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201705011.htm
    [26]
    徐国文, 王士民, 汪冬兵. 基于接头抗弯刚度非线性的壳-弹簧-接触-地层模型的建立[J]. 工程力学, 2016, 33(12): 158–166. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201612020.htm

    XU Guo-wen, WANG Shi-min, WANG Dong-bing. Shell-spring-contact-ground model based on segment joint stiffness nonlinearity[J]. Engineering Mechanics, 2016, 33(12): 158–166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201612020.htm
    [27]
    汪亦显, 单生彪, 袁海平, 等. 盾构隧道衬砌管片接头张合状态力学模型及数值模拟[J]. 建筑结构学报, 2017, 38(5): 158–166. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201705020.htm

    WANG Yi-xian, SHAN Sheng-biao, YUAN Hai-ping, et al. Mechanical model and numerical simulation for patulous-occlusive situation of joint of shield tunnel lining segment[J]. Journal of Building Structures, 2017, 38(5): 158–166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201705020.htm
    [28]
    朱合华, 张子新, 廖少明. 地下建筑结构[M]. 北京: 中国建筑工业出版社, 2011.

    ZHU He-hua, ZHANG Zi-xin, LIANG Shao-ming. Underground Building Structure[M]. Beijing: China Architecture and Building Press, 2011. (in Chinese)
    [29]
    翁效林, 孙腾, 冯莹. 桩基础承载过程对近距离地铁隧道影响机制分析[J]. 哈尔滨工业大学学报, 2016, 48(3): 138 – 142. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201603023.htm

    WENG Xiao-lin, SUN Teng, FENG Ying. Influence of loading pile foundation on existing neighboring subway tunnel[J]. Journal of Harbin Institute of Technology, 2016, 48(3): 138–142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201603023.htm
    [30]
    HUANG H W, SHAO H, ZHANG D M, et al. Deformational responses of operated shield tunnel to extreme surcharge: a case study[J]. Structure and Infrastructure Engineering, 2017, 13(3): 345–360.
    [31]
    LIN X T, CHEN R P, WU H N, et al. Deformation behaviors of existing tunnels caused by shield tunneling under crossing with oblique angle[J]. Tunnelling and Underground Space Technology, 2019, 89: 78–90.
  • Related Articles

    [1]TIAN Ning, CHEN Jian, YOU Wei-jun, HUANG Jue-hao, ZHANG Jiang-xiong, YI Shun, FU Xiao-dong, TIAN Kai-wei. Simulation of undrained shear strength by rotated anisotropy with non-stationary random field[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 92-95. DOI: 10.11779/CJGE2021S2022
    [2]WU Ting-yu, GUO Lin, CAI Yuan-qiang, WANG Jun. Deformation behavior of K0-consolidated soft clay under traffic load-induced stress paths[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 859-867. DOI: 10.11779/CJGE201705010
    [3]YAN Jia-jia, FU Liao-yi, ZHU Jian-feng, LIN Qing-hui. Experimental study on influence of stress rotation on small-strain stiffness behavior of soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1727-1733. DOI: 10.11779/CJGE201609021
    [4]XIONG Huan, GUO Lin, CAI Yuan-qiang. Deformation behaviors of sandy subgrade soil under traffic load-induced stress path[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 662-669. DOI: 10.11779/CJGE201604010
    [5]YAN Jia-jia, ZHOU Jian, GONG Xiao-nan, ZHENG Hong-bin. Deformation behavior of intact clay under pure principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 474-481. DOI: 10.11779/CJGE201403010
    [6]SU Jia-xing, JIANG Ming-jing, LI Li-qing, WU Xiao-feng. Effects of deviatoric stress ratio and intermediate stress parameter on deformation behaviors of dry sands under principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 448-453.
    [7]TONG Zhaoxia, ZHANG Jianmin, YU Yilin, ZHANG Ga. Effects of intermediate principal stress parameter on deformation behavior of sands under cyclic rotation of principal stress axes[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 946-952.
    [8]SHEN Yang, ZHOU Jian, GONG Xiaonan, LIU Hanlong. Influence of principal stress rotation on overconsolidated clay[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1514-1519.
    [9]TONG Zhaoxia, YU Yilin, ZHANG Jianmin, ZHANG Ga. Deformation behavior of sands subjected to cyclic rotation of principal stress axes[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1196-1202.
    [10]WANG Lizhong, SHEN Kailun. Rotational hardening law of K0 consolidated structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 863-872.

Catalog

    Article views (141) PDF downloads (23) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return