Citation: | SU Jia-xing, JIANG Ming-jing, LI Li-qing, WU Xiao-feng. Effects of deviatoric stress ratio and intermediate stress parameter on deformation behaviors of dry sands under principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 448-453. |
[1] |
ISHIHARE K. Soil response in cyclic loading induced by earthquakes, traffic and waves[C]// Proceedings of the 7th Asian Regional Conference on Soil Mechanics and Foundation Engineering. Haifa, Israel: International Academic Publishers, 1983.
|
[2] |
ARTHUR J R F, CHUA K S, DUNSTAN T, et al. Principal stress rotation: A missing parameter [J]. Journal of the Geotechnical Engineering, ASCE, 1980, 106 (4): 418-433.
|
[3] |
ISHIHARE K, TOWHATA I. Sand response to cyclic ration of principal stress direction as induced by wave loads [J]. Soils and Foundations, 1983, 23 (4): 11 – 26.
|
[4] |
MIURA K, MIURA S, TOKI S. Deformation prediction for anisotropic sand during the rotation of the principal stress axes [J]. Soils and Foundations, 1986, 26 (3): 42 – 56.
|
[5] |
WIJEWICKREME D, VAID Y P. Behaviour of loose sand under simultaneous increase in stress ratio and principal stress rotation [J].Canadian Geotechnical Journal, 1993, 30 (6): 953 – 964.
|
[6] |
SIVATHAYALAN S, VAID Y P. Influence of generalized initial state and principal stress rotation on the undrained response of sands[J]. Canadian Geotechnical Journal, 2002, 39 : 63 – 76.
|
[7] |
PRADEL D, ISHIHARA K M. Yielding and flow of sand under principal axes rotation[J]. Soils and Foundations, 1990, 30 (1): 87 – 89.
|
[8] |
YU H S, YUAN X. The importance of accounting for non-coaxial behavior in modeling soil-structure interaction[C]// Prediction, Analysis and Design in Geomechanical Applications. Bolognia: Partenon Editore, 2005: 709 – 718.
|
[9] |
蒋明镜 , 李立青 , 苏佳兴 , 等 . 制备 TJ-1 模拟月壤空心圆柱均匀试样的新方法 [J]. 冰川冻土 , 2011, 33 ( 增刊 ). (JIANG Ming-jing, LI Li-qing, SU Jia-xing, et al. A new preparation method of HCA sample of TJ-1 lunar soil simulant[J]. Journal of Glaciology and Geocryology, 2011, 33 (S0). (in Chinese))
|
[10] |
GUTIERREZ M, ISHIHARA K, TOWHATA I. Flow theory for sand during rotation of principal stress direction[J]. Soils and Foundations, 1991, 31 (4): 121 – 132.
|
[11] |
童朝霞 , 张建民 , 于艺林 , 等 . 中主应力系数对应力主轴循环旋转条件下砂土变形特性的影响 [J]. 岩土工程学报 , 2009, 31 (6): 946 – 952. (TONG Zhao-xia, ZHANG Jian-min, YU Yi-lin, et al. Effects of intermediate principal stress parameter on deformation behavior of sands under cyclic rotation of principal stress axes[J]. Chinese Journal of Geotechnical Engineering , 2009, 31 (6) : 946 – 952. (in Chinese))
|
[12] |
史宏彦 , 白 琳 . 平面应变条件下土的非共轴变形特性 [J]. 广东工业大学学报 , 2007(3): 84 – 87. (SHI Hong-yan, Bai Lin. Non-coaxial behavior of soil under plane strain conditions[J]. Journal of Guangdong University of Technology , 2007(3): 84 – 87. (in Chinese) )
|
[13] |
沈 扬 , 周 建 , 龚晓南 . 主应力轴旋转对土体性状影响的试验进展研究 [J]. 岩石力学与工程学报 , 2006, 25 (7): 1408 – 1416. (SHEN Yang, ZHOU Jian, GONG Xiao-nan. Experimental progress research on influence of principal stress rotation on soils’ characteristics[J]. Chinese Journal of Rock Mechanics and Engineering , 2006, 25 (7): 1408 – 1416. (in Chinese) )
|
[1] | GU Xiao-qiang, YU Kuan-yuan, HUANG Mao-song, LIU Xin, YAN Fang, WU De-shun. Finite element method for analyzing environmental vibration without apparent sources and its application in Beijing High-Energy Photon Source[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2245-2252. DOI: 10.11779/CJGE202212011 |
[2] | WEI Ying-qi, CAI Hong, WU Shuai-feng, XIAO Jian-zhang, SONG Jian-zheng. Vibration response and reinforcement mechanism of high-fill soil-stone mixtures by dynamic compaction[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 237-240. DOI: 10.11779/CJGE2019S1060 |
[3] | CAO Xue-shan, E Li-su, LAI Xi-yang, ZHOU Sai, LI Guo-wei, YUAN Jun-ping, WU Jian-tao. Factors for strength attenuation of mudstone during slaking and disintegration[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1936-1942. DOI: 10.11779/CJGE201910019 |
[4] | DU Tao-tao. Propagation and response laws of mine seism[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 418-425. DOI: 10.11779/CJGE201803004 |
[5] | LI Shu-gang, ZHAO Yong, XU Man-gui. Change law of gas content under low-frequency vibration[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 918-923. DOI: 10.11779/CJGE201505018 |
[6] | LÜ Hai-bo, ZENG Zhao-tian, ZHAO Yan-lin, GE Ruo-dong, CHEN Cheng-you, WEI Chang-fu. Function fitting on strength attenuation curve of swell-shrinking soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 157-162. |
[7] | YU Tian, LI Xiao-jun. Attenuation relationship of ground motion for Wenchuan Earthquake region based on NGA model[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 552-558. |
[8] | HE Changming, ZOU Jinfeng, LI Liang. Field tests on measurement of dynamic stress of dynamic compaction[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 628-632. |
[9] | Sun Jinzhong, Tan Hanhua, Qi Shengwen, Wang Shuli. Frequency analysis of dynamic compaction vibration[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(4): 412-415. |
[10] | Wang Mingyang, Qian Qihu. Attenuation Law of Explosive Wave Propagation in Cracks[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(2): 42-46. |