• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XIONG Huan, GUO Lin, CAI Yuan-qiang. Deformation behaviors of sandy subgrade soil under traffic load-induced stress path[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 662-669. DOI: 10.11779/CJGE201604010
Citation: XIONG Huan, GUO Lin, CAI Yuan-qiang. Deformation behaviors of sandy subgrade soil under traffic load-induced stress path[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 662-669. DOI: 10.11779/CJGE201604010

Deformation behaviors of sandy subgrade soil under traffic load-induced stress path

More Information
  • Revised Date: February 05, 2015
  • Published Date: April 24, 2016
  • Under traffic load, the magnitude of deviatoric stress of subgrade soil varies periodically, and the principal stress axis rotates continually. In order to study the drained deformation behaviors characteristics of subgrade soil due to traffic load-induced stress path, a series of apple-shaped dynamic cyclic stress path tests and conventional dynamic stress path tests are conducted on K0-consolidated saturated sand using the dynamic hollow cylinder apparatus. Comparisons between the results under the two different stress paths indicate that the continuous rotation of the principal stress axis will accelerate the accumulation of the vertical permanent strains and aggravate the degradation of the resilient modulus. And with the increasing of CSR, the discrepancies in the deformation behaviors under different stress paths become more apparent. Finally, a modified formula for the resilient modulus is proposed to evaluate the principal stress rotation effects based on the Uzan model.
  • [1]
    MIURA N, FUJIKAWA K, SAKAI A, et al. Field measurement of settlement in Saga airport highway subjected to traffic load[J]. Tsuchi-to-Kiso, 1995, 43(449): 49-51.
    [2]
    邓学均. 路基路面工程[M]. 北京: 人民交通出版社, 2000. (DENG Xue-jun. Subgrade and pavement engineering[M]. Beijing: China Communications Press, 2000. (in Chinese))
    [3]
    CHAI J C, MIURA N. Traffic-load-induced permanent deformation of road on soft subsoil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(11): 907-916.
    [4]
    POWRIE W, YANG L A, CLAYTON C R I. Stress changes in the ground below ballasted railway track during train passage[J]. Journal of Rail and Rapid Transit, 2007, 221(2): 247-262.
    [5]
    ISHIKAWA T, SEKINE E, MIURA S. Cyclic deformation of granular material subjected to moving-wheel loads[J]. Canadian Geotechnical Journal, 2011, 48(5): 691-703.
    [6]
    边学成, 胡 婷, 陈云敏. 列车交通荷载作用下地基土单元体的应力路径[J]. 土木工程学报, 2008, 41(11): 86-92. (BIAN Xue-cheng, HU Ting, CHEN Yun-min. Stress path in soil element of ground under moving traffic loads[J]. China Civil Engineering Journal, 2008, 41(11): 96-92. (in Chinese))
    [7]
    丁 智, 葛国宝, 魏新江, 等. 地铁列车运营引起的地基土应力状态变化分析[J]. 岩土工程学报, 2013, 35(增刊2): 647-651. (DING Zhi, GE Guo-bao, WEI Xin-jiang, et al. Variation of stress state of foundation soils induced by running subway[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 647-651. (in Chinese))
    [8]
    陈国兴, 潘 华. 轨道交通振动作用引起的土单元应力路径特征及其在室内试验中的模拟[J]. 土木工程学报, 2010(增刊2): 340-345. (CHEN Guo-xing, PAN Hua. The characteristics and laboratory test simulation of stress path induced by traffic loading[J]. China Civil Engineering Journal, 2010(S2): 340-345. (in Chinese))
    [9]
    YASUHARA K, YAMANOUCHI T, HIRAO K. Cyclic strength and deformation of normally consolidated clay[J]. Soils and Foundations, 1982, 22(3): 77-91.
    [10]
    HYDE A F L, YASUHARA K, HIRAO K. Stability criteria for marine clay under one-way cyclic loading[J]. Journal of Geotechnical Engineering, 1993, 119(11): 1771-1789.
    [11]
    MOSES G G, RAO S N, RAO P N. Undrained strength behaviour of a cemented marine clay under monotonic and cyclic loading[J]. Ocean Engineering, 2003, 30(14): 1765-1789.
    [12]
    LI L L, DAN H B, WANG L Z. Undrained behavior of natural marine clay under cyclic loading[J]. Ocean Engineering, 2011, 38(16): 1792-1805.
    [13]
    KIRKGARD M M, LADE P V. Anisotropic three-dimensional behavior of a normally consolidated clay[J]. Canadian Geotechnical Journal, 1993, 30(5): 848-858.
    [14]
    YANG Z X, LI X S, YANG J. Undrained anisotropy and rotational shear in granular soil[J]. Géotechnique, 2007, 57(4): 371-384.
    [15]
    ZHANG J M, TONG Z X, YU Y L, et al. Effects of cyclic rotation of principal stress axes and intermediate principal stress parameter on the deformation behavior of sands[C]// Proceedings of the Conference of Geotechnical Earthquake Engineering and Soil Dynamics IV. Sacramento, California: ASCE, 2008: 18-22.
    [16]
    姚兆明, 黄茂松, 曹 杰. 主应力轴循环旋转下饱和软黏土的累积变形[J]. 岩土工程学报, 2012, 34(6): 1005-1012. (YAO Zhao-ming, HUANG Mao-song, CAO Jie. Cumulative deformation of saturated soft clay subjected to cyclic rotation of principal stress axis[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1005-1012. (in Chinese))
    [17]
    OKOCHI Y, TATSUOKA F. Some factors affecting K0-values of sand measured in triaxial cell[J]. Soils and Foundations, 1984, 24(3): 52-68.
    [18]
    BROWN S F. Soil mechanics in pavement engineering[J]. Géotechnique, 1996, 46(3): 383-426.
    [19]
    UZAN J. Characterization of granular material[J]. Transportation Research Record, 1985(1022): 52-59.
    [20]
    HICKS R G, MONISMITH C L. Factors influencing the resilient response of granular materials[J]. Highway Research Record, 1971(345): 15-31.
    本期广告索引
    21 封2 北京筑信达工程咨询有限公司
    22 封3 北京理正软件股份有限公司
    23 封4 上海分元土木工程科技有限公司
    24 后插1 济南普业机电技术有限公司
    25 后插2 西安力创材料检测技术有限公司

Catalog

    Article views (453) PDF downloads (403) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return