• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Dan, ZHANG Bo-wen, HONG Chen-jie, HUANG Man, DU Shi-gui, LUO Zhan-you. Shear properties of two-order morphology of rock joints[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1434-1442. DOI: 10.11779/CJGE202208008
Citation: LIU Dan, ZHANG Bo-wen, HONG Chen-jie, HUANG Man, DU Shi-gui, LUO Zhan-you. Shear properties of two-order morphology of rock joints[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1434-1442. DOI: 10.11779/CJGE202208008

Shear properties of two-order morphology of rock joints

More Information
  • Received Date: July 27, 2021
  • Available Online: September 22, 2022
  • The surface morphology of rock joints is composed of two-order morphology, including macroscopic undulation components (first-order) and asperities of joint surfaces (second-order), and different morphologic components contribute differently to the shear characteristics during the shearing process. 3D laser scanning, 3D printing technology and similar materials are adopted to produce different model joints in batches, and direct shear tests are carried out under different normal stress conditions. The test results show that under the same normal stress, the second-order morphology shear wear is close to the overall morphology and greater than the first-order morphology. Under different normal stresses, the average variation rate of the two-order roughness parameters gradually increases with the increase of the normal stress before and after shearing. The average variation rate of the first-order roughness parameters $ {\eta _{\rm I}} $ is 1.99%~4.03%, and that of the second-order roughness parameters $ {\eta _{\rm{ \mathsf{ π} }} } $ is 5.97%~8.16%. The cosine angle is calculated based on the principle of "cosine similarity" to evaluate the similarity of the joints before and after shearing. The cosine angle of the second-order morphology fluctuates most, the cosine angle of the first-order morphology is close to the overall morphology, and the shear wear characteristics of the second-order morphology and the shear dilatancy characteristics of the first-order morphology are verified. The above results are of reference significance for the evaluation of the shear strength of joints.
  • [1]
    夏才初, 唐志成, 宋英龙, 等. 节理峰值剪切位移及其影响因素分析[J]. 岩土力学, 2011, 32(6): 1654-1658. doi: 10.3969/j.issn.1000-7598.2011.06.010

    XIA Cai-chu, TANG Zhi-cheng, SONG Ying-long, et al. Analysis of relationship between joint peak shear displacement and its influence factors[J]. Rock and Soil Mechanics, 2011, 32(6): 1654-1658. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.06.010
    [2]
    夏才初, 宋英龙, 唐志成, 等. 粗糙节理剪切性质的颗粒流数值模拟[J]. 岩石力学与工程学报, 2012, 31(8): 1545-1552. doi: 10.3969/j.issn.1000-6915.2012.08.007

    XIA Cai-chu, SONG Ying-long, TANG Zhi-cheng, et al. Particle flow numerical simulation for shear behavior of rough joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8): 1545-1552. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.08.007
    [3]
    陈世江, 朱万成, 刘树新, 等. 岩体结构面粗糙度各向异性特征及尺寸效应分析[J]. 岩石力学与工程学报, 2015, 34(1): 57-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501007.htm

    CHEN Shi-jiang, ZHU Wan-cheng, LIU Shu-xin, et al. Anisotropy and size effects of surface roughness of rock joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 57-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501007.htm
    [4]
    BARTON N. Review of a new shear-strength criterion for rock joints[J]. Engineering Geology, 1973, 7(4): 287-332. doi: 10.1016/0013-7952(73)90013-6
    [5]
    BARTON N, CHOUBEY V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics, 1977, 10(1/2): 1-54. doi: 10.1007/BF01261801
    [6]
    ISRM. International Society for Rock Mechanics Commission on Standardization of Laboratory and Field Tests: Suggested methods for the quantitative description of discontinuities in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1978, 15(6): 319-368. doi: 10.1016/0148-9062(78)91472-9
    [7]
    JAFARI M K, HOSSEINI K A, PELLET F, et al. Evaluation of shear strength of rock joints subjected to cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(7): 619-630. doi: 10.1016/S0267-7261(03)00063-0
    [8]
    沈明荣, 张清照. 规则齿型结构面剪切特性的模型试验研究[J]. 岩石力学与工程学报, 2010, 29(4): 713-719. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201004011.htm

    SHEN Ming-rong, ZHANG Qing-zhao. Experimental study of shear deformation characteristics of rock mass discontinuities[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(4): 713-719. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201004011.htm
    [9]
    YANG Z Y, TAGHICHIAN A, LI W C. Effect of asperity order on the shear response of three-dimensional joints by focusing on damage area[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(6): 1012-1026. doi: 10.1016/j.ijrmms.2010.05.008
    [10]
    朱小明, 李海波, 刘博, 等. 含二阶起伏体的模拟岩体节理试样剪切特性试验研究[J]. 岩土力学, 2012, 33(2): 354-360. doi: 10.3969/j.issn.1000-7598.2012.02.006

    ZHU Xiao-ming, LI Hai-bo, LIU Bo, et al. Experimental study of shear characteristics by simulating rock mass joints sample with second-order asperities[J]. Rock and Soil Mechanics, 2012, 33(2): 354-360. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.02.006
    [11]
    周辉, 程广坦, 朱勇, 等. 大理岩规则齿形结构面剪切特性试验研究[J]. 岩土力学, 2019, 40(3): 852-860. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903004.htm

    ZHOU Hui, CHENG Guang-tan, ZHU Yong, et al. Experimental study of shear deformation characteristics of marble dentate joints[J]. Rock and Soil Mechanics, 2019, 40(3): 852-860. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903004.htm
    [12]
    LIU X R, LIU Y Q, LU Y M, et al. Experimental and numerical study on pre-peak cyclic shear mechanism of artificial rock joints[J]. Structural Engineering and Mechanics, 2020, 74(3): 407-423.
    [13]
    刘新荣, 许彬, 黄俊辉, 等. 多形态贯通型岩体结构面宏细观剪切力学行为研究[J]. 岩土工程学报, 2021, 43(3): 406-415. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103003.htm

    LIU Xin-rong, XU Bin, HUANG Jun-hui, et al. Macro-meso shear mechanical behaviors of coalescent rock joints with different morphologies[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 406-415. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103003.htm
    [14]
    LI Y, OH J, MITRA R, et al. A constitutive model for a laboratory rock joint with multi-scale asperity degradation[J]. Computers and Geotechnics, 2016, 72: 143-151. doi: 10.1016/j.compgeo.2015.10.008
    [15]
    孙盛玥, 李迎春, 唐春安, 等. 天然岩石节理双阶粗糙度分形特征研究[J]. 岩石力学与工程学报, 2019, 38(12): 2502-2511. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201912010.htm

    SUN Sheng-yue, LI Ying-chun, TANG Chun-an, et al. Dual fractal features of the surface roughness of natural rock joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2502-2511. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201912010.htm
    [16]
    LI Y C, SUN S Y, TANG C A. Analytical prediction of the shear behaviour of rock joints with quantified waviness and unevenness through wavelet analysis[J]. Rock Mechanics and Rock Engineering, 2019, 52(10): 3645-3657. doi: 10.1007/s00603-019-01817-5
    [17]
    黄曼, 洪陈杰, 杜时贵, 等. 岩石结构面形貌分级方法及两级粗糙特性研究[J]. 岩石力学与工程学报, 2020, 39(6): 1153-1164. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006007.htm

    HUANG Man, HONG Chen-jie, DU Shi-gui, et al. Study on morphological classification method and two-order roughness of rock joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1153-1164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006007.htm
    [18]
    HUANG M, HONG C J, DU S G, et al. Experimental technology for the shear strength of the series-scale rock joint model[J]. Rock Mechanics and Rock Engineering, 2020, 53(12): 5677-5695. doi: 10.1007/s00603-020-02241-w
    [19]
    TATONE B S A, GRASSELLI G. A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials[J]. The Review of Scientific Instruments, 2009, 80(12): 125110. doi: 10.1063/1.3266964
    [20]
    TATONE B S A, GRASSELLI G. An investigation of discontinuity roughness scale dependency using high- resolution surface measurements[J]. Rock Mechanics and Rock Engineering, 2013, 46(4): 657-681. doi: 10.1007/s00603-012-0294-2
    [21]
    黄曼, 罗战友, 杜时贵. 岩石模型结构面的取样代表性试验研究[J]. 岩石力学与工程学报, 2013, 32(10): 2008-2014. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310008.htm

    HUANG Man, LUO Zhan-you, DU Shi-gui. Experimental study of sampling representativeness of structural plane of rock model[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(10): 2008-2014. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310008.htm
    [22]
    洪陈杰, 黄曼, 夏才初, 等. 岩体结构面各向异性变异系数的尺寸效应研究[J]. 岩土力学, 2020, 41(6): 2098-2109. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006035.htm

    HONG Chen-jie, HUANG Man, XIA Cai-chu, et al. Study of size effect on the anisotropic variation coefficient of rock joints[J]. Rock and Soil Mechanics, 2020, 41(6): 2098-2109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006035.htm
    [23]
    罗战友, 李棋, 熊志强, 等. 吻合岩石结构面一体化制作模具研制及试验对比研究[J]. 岩石力学与工程学报, 2018, 37(3): 689-698. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201803017.htm

    LUO Zhan-you, LI Qi, XIONG Zhi-qiang, et al. Development and experimental comparative study of the integrated mold for fit joint of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 689-698. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201803017.htm
    [24]
    杜时贵, 黄曼, 罗战友, 等. 岩石结构面力学原型试验相似材料研究[J]. 岩石力学与工程学报, 2010, 29(11): 2263-2270. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201011014.htm

    DU Shi-gui, HUANG Man, LUO Zhan-you, et al. Similar material study of mechanical prototype test of rock structural plane[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(11): 2263-2270. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201011014.htm
    [25]
    黄曼. 岩石模型结构面的相似材料研制及力学可靠性研究[D]. 杭州: 浙江大学, 2012.

    HUANG Man. Similar Materials Developed and Mechanical Reliability Study on Model Rock Structural Plane[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
    [26]
    GRASSELLI G, WIRTH J, EGGER P. Quantitative three- dimensional description of a rough surface and parameter evolution with shearing[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(6): 789-800. doi: 10.1016/S1365-1609(02)00070-9
    [27]
    GRASSELLI G. Manuel rocha medal recipient shear strength of rock joints based on quantified surface description[J]. Rock Mechanics and Rock Engineering, 2006, 39(4): 295-314. doi: 10.1007/s00603-006-0100-0
    [28]
    唐志成, 王晓川. 不同接触状态岩石节理的剪切力学性质试验研究[J]. 岩土工程学报, 2017, 39(12): 2312-2319. doi: 10.11779/CJGE201712021

    TANG Zhi-cheng, WANG Xiao-chuan. Experimental studies on mechanical behaviour of rock joints with varying matching degrees[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2312-2319. (in Chinese) doi: 10.11779/CJGE201712021
  • Related Articles

    [1]GAO Fuzhou, ZHANG Junyun, LUO Xiaolong, ZHAI Kexiang, ZHANG Le, HUANG Rui, WU Xiaofei. Shear mechanical properties and empirical formula of infilled rock joints[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 608-617. DOI: 10.11779/CJGE20231194
    [2]LIN Peiyuan, GUO Panfeng, GUO Chengchao, CHEN Lichao, WANG Fuming. Experimental study on interfacial shear properties of steel plate, polymer and soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 85-93. DOI: 10.11779/CJGE20210845
    [3]LIU Kai-fu, XU Jia-pei, ZHOU Qing-song, XIE Xin-yu, HU Yi. Large-scale direct shear tests on properties of geogrid-soil interfaces[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 185-188. DOI: 10.11779/CJGE2019S1047
    [4]DENG Hua-feng, XIAO Yao, LI Jian-lin, DUAN Ling-ling, ZHI Yong-yan, PAN Deng. Degradation laws of joint strength and micro-morphology under repeated shear tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 183-188. DOI: 10.11779/CJGE2018S2037
    [5]YANG Ji-hong, DONG Jin-yu, HUANG Zhi-quan, ZHENG Zhu-guang, QI Dan. Large-scale direct shear tests on accumulation body with different stone contents[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 161-166. DOI: 10.11779/CJGE2016S2026
    [6]WANG Gang, ZHANG Xue-peng, JIANG Yu-jing, ZHANG Yong-zheng. New shear strength criterion for rough rock joints considering shear velocity[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1399-1404. DOI: 10.11779/CJGE201508006
    [7]TANG Zhi-cheng, LIU Quan-sheng, LIU Xiao-yan. Shear behavior of rock joints and comparative study on shear strength criteria with three-dimensional morphology parameters[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 873-879. DOI: 10.11779/CJGE201405009
    [8]SUN Fu-ting, SHE Cheng-xue, WAN Li-tai, JIANG Qing-ren. Peak shear strength criterion for rock joints based on three-dimensional morphology characteristics[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 529-536. DOI: 10.11779/CJGE201403016
    [9]WANG Jiang-ying, CAO Wen-gui, ZHANG Chao, WANG Hui-ping. Large-scale direct shear tests on soil-rock aggregate mixture under complicated environment based on orthogonal design[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1849-1856.
    [10]XU Xiao-feng, WEI Hou-zhen, MENG Qing-shan, WEI Chang-fu, AI Dong-hai. Effects of shear rate on shear strength and deformation characteristics of coarse-grained soils in large-scale direct shear tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 728-733.

Catalog

    Article views (216) PDF downloads (80) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return