• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Kai-fu, XU Jia-pei, ZHOU Qing-song, XIE Xin-yu, HU Yi. Large-scale direct shear tests on properties of geogrid-soil interfaces[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 185-188. DOI: 10.11779/CJGE2019S1047
Citation: LIU Kai-fu, XU Jia-pei, ZHOU Qing-song, XIE Xin-yu, HU Yi. Large-scale direct shear tests on properties of geogrid-soil interfaces[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 185-188. DOI: 10.11779/CJGE2019S1047

Large-scale direct shear tests on properties of geogrid-soil interfaces

More Information
  • Received Date: April 29, 2019
  • Published Date: July 14, 2019
  • The properties of geogrid-soil interface directly influences the safety and stability of reinforced earth projects. However, there are few researches on the interface properties of geogrid with different soil materials at the two sides of geogrid. A series of large-scale direct shear tests are conducted by using two-way geogrid as reinforced materials, silty clay with different water contents and quartz sand with different grain sizes. The effects on shear strength of geogrid-soil interface are analyzed under different influence factors, such as normal stress, water content of silty clay, shear velocity, grain size of quartz sand, and compaction degree of silty clay. The results show that the relationship between shear strength of geogrid-soil interface and normal stress is a linear correlation and in accordance with Mohr-Coloumb theory. The shear strength of geogrid-soil interface is influenced by the water content of silty clay. The shear strength index of interface is the highest at the optimum water content of silty clay. The shear strength of geogrid-soil interface is influenced little by the shear velocity and grain size, and their influence range is within ±10% and ±7%, respectively. The compaction degree of silty clay can improve the shear strength of geogrid-soil interface. The higher the degree of compaction is, the greater the shear strength-improving amplitude is. These factors must be considered properly in the engineering applications.
  • [1]
    VIDAL H.The principal of reinforced earth (Highway Research Record 282)[R]. Washington D C: Highway Research Board, National Research Council, 1969: 1-24.
    [2]
    LEE K M, MANJUNATH V R.Soil-geotextile interface friction by direct shear test[J]. Canadian Geotechnical Journal, 2000, 37(1): 238-252.
    [3]
    施有志, 马时冬. 土工格栅的界面特性试验[J]. 岩土力学, 2003, 24(2): 296-300.
    (SHI You-zhi, MA Shi-dong.Test for interface characterictics of geogrid[J]. Rock and Soil Mechanics, 2003, 24(2): 296-300. (in Chinese))
    [4]
    包承纲. 土工合成材料界面特性的研究和试验验证[J]. 岩石力学与工程学报, 2006, 25(9): 1735-1744.
    (BAO Cheng-gang.Study on interface behavior of geosynthetics and soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(9): 1735-1744. (in Chinese))
    [5]
    刘文白, 周健. 土工格栅与土界面作用特性试验研究[J]. 岩土力学, 2009, 30(4): 965-970.
    (LIU Wen-bai, ZHOU Jian.Experimental research on interface friction of geogrids and soil[J]. Rock and Soil Mechanics, 2009, 30(4): 965-970. (in Chinese))
    [6]
    史旦达, 刘文白, 水伟厚, 等. 单、双向塑料土工格栅与不同填料界面作用特性与对比试验研究[J]. 岩土力学, 2009, 30(8): 2237-2244.
    (SHI Dan-da, LIU Wen-bai, SUI Wei-hou, et al.Comparative experimental studies of interface characteristics between uniaxial/biaxial plastic geogrids and different soils[J]. Rock and Soil Mechanics, 2009, 30(8): 2237-2244. (in Chinese))
    [7]
    LIU C N, HO Y H, HUANG J W.Large scale direct shear tests of soil/PET-yarn geogrid interfaces[J]. Geotextiles and Geomembrances, 2009, 27(1): 19-30.
    [8]
    徐超, 孟凡祥. 剪切速率和材料特性对筋-土界面抗剪强度的影响[J]. 岩土力学, 2010, 31(10): 3101-3106.
    (XU Chao, MENG Fan-xiang.Effects of shear rate and material properties on shear strength of geosynthetic-soil interface[J]. Rock and Soil Mechanics, 2010, 31(10): 3101-3106. (in Chinese))
    [9]
    王协群, 张俊峰, 邹维列, 等. 格栅-土界面抗剪强度模型及其影响因素[J]. 土木工程学报, 2013, 46(4): 133-141.
    (WANG Xie-qun, ZHANG Jun-feng, ZOU Wei-lie, et al.A shear strength model of geogrid-soil interface and its influence factors[J]. China Civil Engineering Journal, 2013, 46(4): 133-141. (in Chinese))
    [10]
    张建伟, 余杭, 王仕卿, 等. 黄泛区粉土-GFRP 布界面摩擦特性试验[J/OL]. 复合材料学报, https://doi.org/ 10.13801/j.cnki.fhclxb.20181129.001.(ZHANG Jian-wei, YU Hang, WANG Shi-qing, et al. Experimental study on interface friction characteristics of silty soil in the Yellow River flooding area with GFRP cloth[J]. Acta Materiae Compositae Sinica, https://doi.org/10.13801/j.cnki.fhclxb. 20181129.001. (in Chinese))
    [11]
    刘泽, 雷勇. 煤矸石-土工格栅-砂层状体系的界面摩擦特性试验研究[J]. 工业建筑, 2014, 44(4): 90-93, 134.(LIU Ze, LEI Yong. Test study on the interface friction characteristics of coal gangue-geogrid-sand layered system[J]. Industrial Construction, 2014, 44(4): 90-93, 134. (in Chinese))
    [12]
    ASTM D5321/D5321M—14 Standard test method for determining the shear strength of soil-geosynthetic and geosynthetic-geosynthetic interfaces by direct shear[S]. ASTM International, West Conshohocken, PA, 2014.
    [13]
    中华人民共和国交通部. JTG E50—2006公路工程土工合成材料试验规程[S]. 北京: 人民交通出版社, 2006.
    (Ministry of Communications of the People's Republic of China. JTG E50—2006 Test methods of geosynthetics for highway engineering[S]. Beijing: China Communications Press, 2006. (in Chinese))
  • Related Articles

    [1]Study on Influencing Factors and Experimental Mechanism of Free Swelling Rate of Expansive Soil[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240953
    [2]ZHU Ming-xing, WANG Lei, GONG Wei-ming. Factors influencing isolation effects of isolation piles under side loading[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 671-679. DOI: 10.11779/CJGE201404011
    [3]WANG Nai, WANG Lan-min. Characteristics and influencing factors of seismic loess slopes in valley areas[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 434-438.
    [4]WU Xu-ping, DING Chun-lin. Damage properties and influence factors of remolded frozen clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2038-2044.
    [5]ZHENG Jun-jie, MIAO Chen-xi, XIE Ming-xing, ZHANG Jun. Interface properties and influence of particle size on geogrid reinforcement performance by DEM[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1423-1428.
    [6]LI Neng-hui, WU Qing-xi, LU Jun, JIANG Song-sheng. Influencing factors for earth pressure and its distribution on retaining wall[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1381-1386.
    [7]Main factors influencing artificial upper table for embankment of Qinghai-Tibet railway in permafrost region[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8).
    [8]WANG Chengbing, ZHU Hehua. Tunnel collapse mechanism and numerical analysis of its influencing factors[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 450-456.
    [9]YANG Guangqing, LI Guangxin, ZHANG Baojian. Experimental studies on interface friction characteristics of geogrids[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 948-952.
    [10]YANG Guangqing, GAO Minhuan, ZHANG Xinyu. Study on influence factors of California Bearing Ratio (CBR) of expressway subgrade materials[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1): 97-100.
  • Cited by

    Periodical cited type(20)

    1. 黄赛,李贺,王立朋,刘伟超,杨艳. 缝合横肋式土工织物筋土界面特性数值模拟. 科学技术与工程. 2025(06): 2469-2479 .
    2. 陈国舟,杜子博,丁孟翔,张景伟. 竹筋格栅加筋黄土界面剪切特性试验研究. 地下空间与工程学报. 2024(06): 1885-1893 .
    3. 吴清星,刘玉蕊,侯维杰. 高填方加筋土边坡稳定性试验与数值模拟研究. 水利水电快报. 2023(04): 97-102 .
    4. 刘飞禹,李婧婷,应梦杰,童立红. 位移幅值对砾石-格栅界面循环剪切特性的影响. 中国公路学报. 2023(05): 58-64 .
    5. 熊勃,童艳光,何江荟. 不同剪切速率和孔径下立体格栅筋土界面剪切特性. 岩土工程技术. 2023(04): 470-474 .
    6. 罗强. 低温冻结条件下渠道基土与复合土工膜界面抗剪强度研究. 水利科学与寒区工程. 2023(08): 5-7 .
    7. 李丹,董建刚,胡波,李波. 土工格室加筋砂土大型叠环式剪切试验研究. 人民长江. 2023(12): 211-217 .
    8. 程晓颖,乔婷,秦建敏,季顺迎. 复杂形态碎石颗粒的三维离散元模拟及试验验证. 计算机辅助工程. 2023(04): 40-47 .
    9. 陈海峻,左双英,王浩,李佳艳,杨正云. 土工格栅加筋土强度及排水特性优化研究. 地下空间与工程学报. 2023(S2): 679-687+697 .
    10. 王柳江,刘归华,毛航宇,王珊,沈超敏. 级配对堆石-土工格栅界面剪切特性影响试验研究. 水利水电技术(中英文). 2022(05): 82-90 .
    11. 王家全,祁航翔,黄世斌,唐毅. 土工格栅与碎石土混合料界面作用的大型直剪试验研究. 水文地质工程地质. 2022(04): 81-90 .
    12. 袁喜魁,杨皓天,李雨润. 砖渣土与土工格栅界面作用力学特性研究. 中外公路. 2022(04): 170-174 .
    13. 王蜜蜜,冯艺玮,吴迪,袁霄,何贵银,左双英. 土工格栅加筋土抗剪性能优化正交试验研究. 勘察科学技术. 2022(05): 1-7 .
    14. 杨朵环. 土工格栅加筋路基室内试验和数值模拟变形特性研究. 中国水运(下半月). 2021(03): 22-24 .
    15. 何淼,李亚军,唐荣坚,杨寒冰. 基于多评价方法的港口危险货物集装箱堆场动态风险评估. 中国水运. 2021(06): 29-33 .
    16. 曹海莹,郭毅磊,杜量. 动、静载环境下界面土直剪试验. 吉林大学学报(地球科学版). 2021(05): 1381-1390 .
    17. 薛中飞,王琳,郑文杰. 农作废弃秸秆加筋黄土的剪切特性. 长江科学院院报. 2020(04): 180-186 .
    18. 张峰. 基于MATLAB一元线性回归分析的库坝土体抗剪强度测定. 科学技术创新. 2020(12): 142-143 .
    19. 马利军,王红雨,柴鹏翔,孙晓荣,麦文慧. 土工袋材与沟坡土的界面摩擦特性试验研究. 水利水电技术. 2020(09): 173-180 .
    20. 周芬,丘友威,杜运兴. 顶部荷载作用下预应力加筋土挡墙性能的试验研究. 铁道科学与工程学报. 2020(12): 3063-3071 .

    Other cited types(21)

Catalog

    Article views (277) PDF downloads (122) Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return