Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GAO Fuzhou, ZHANG Junyun, LUO Xiaolong, ZHAI Kexiang, ZHANG Le, HUANG Rui, WU Xiaofei. Shear mechanical properties and empirical formula of infilled rock joints[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 608-617. DOI: 10.11779/CJGE20231194
Citation: GAO Fuzhou, ZHANG Junyun, LUO Xiaolong, ZHAI Kexiang, ZHANG Le, HUANG Rui, WU Xiaofei. Shear mechanical properties and empirical formula of infilled rock joints[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 608-617. DOI: 10.11779/CJGE20231194

Shear mechanical properties and empirical formula of infilled rock joints

More Information
  • Received Date: December 05, 2023
  • Available Online: May 10, 2024
  • The investigation of the shear mechanical properties of infilled rock joints is of significant importance for the stability assessment of engineering rock formations. In this study, the large-scale direct shear tests on infilled rock joint specimens are conducted considering the influences of normal stress (σn), infilled thickness (t) and joint roughness coefficient (JRC). The evolution patterns of the shear failure characteristics, shear characteristics curves and peak shear strength are analyzed. Based on these findings, an empirical formula for the peak shear strength of infilled rock joints is established. The study reveals that the shear failure location of the infilled rock joint is primarily at the contact interface between the infilled medium and the rock joint wall. The shear stress-shear displacement curve of the infilled rock joint typically exhibits a shear stress peak when σn≥600 kPa, t≤5 mm, and JRC≥6.36. At an infilled ratio Δ of 1.12, the peak shear strength of the rock joint (τp) is close to that of the infilled medium (τi), As Δ further increases, τp decreases below τi. The parameter W is introduced into the empirical formula for the peak shear strength of the infilled rock joint to describe the interaction occurring at the contact surface between the infilled medium and the rock joint wall, capturing the influences on the peak shear strength of the infilled rock joint. The calculated values by the empirical formula exhibit an average relative error δ of ≤9.01% compared to the test ones.
  • [1]
    LADANYI B, ARCHAMBAULT G. Shear strength and deformability of filled indented joints[C]// Proceedings of International Symposium on Geotechnics of Structurally Complex Formations, Capri, Italy, 1977.
    [2]
    INDRARATNA B, WELIDENIYA H S, BROWN E T. A shear strength model for idealised infilled joints under constant normal stiffness[J]. Géotechnique, 2005, 55(3): 215-226. doi: 10.1680/geot.2005.55.3.215
    [3]
    INDRARATNA B, JAYANATHAN M, BROWN E T. Shear strength model for overconsolidated clay-infilled idealised rock joints[J]. Géotechnique, 2008, 58(1): 55-65. doi: 10.1680/geot.2008.58.1.55
    [4]
    INDRARATNA B, PREMADASA W, BROWN E T, et al. Shear strength of rock joints influenced by compacted infill[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 296-307. doi: 10.1016/j.ijrmms.2014.04.019
    [5]
    MIRZAGHORBANALI A, NEMCIK J, AZIZ N. Effects of cyclic loading on the shear behaviour of infilled rock joints under constant normal stiffness conditions[J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1373-1391. doi: 10.1007/s00603-013-0452-1
    [6]
    JAHANIAN H, SADAGHIANI M H. Experimental study on the shear strength of sandy clay infilled regular rough rock joints[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 907-922. doi: 10.1007/s00603-014-0643-4
    [7]
    PHIEN-Wej N, SHRESTHA U B, RANTUCCI G. Effect of infill thickness on shear behaviour of rock joints[C]// Proceedings of the International Conference on Rock Joints. Loen, 1990: 289-294.
    [8]
    SHRIVASTAVA A K, RAO K S. Physical modeling of shear behavior of infilled rock joints under CNL and CNS boundary conditions[J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 101-118. doi: 10.1007/s00603-017-1318-8
    [9]
    LU Y L, WANG L G, LI Z L, et al. Experimental study on the shear behavior of regular sandstone joints filled with cement grout[J]. Rock Mechanics and Rock Engineering, 2017, 50(5): 1321-1336. doi: 10.1007/s00603-016-1154-2
    [10]
    KANG Y S, HOU C C, LIU B, et al. Influence of water content on the shear strength of rock joints with clay-rich fillings[J]. Rock Mechanics and Rock Engineering, 2023, 56(2): 1437-1449. doi: 10.1007/s00603-022-03158-2
    [11]
    焦峰, 郭保华, 翟明磊. 砂土充填大理岩节理的剪切强度经验公式[J]. 岩土力学, 2018, 39(11): 4102-4108.

    JIAO Feng, GUO Baohua, ZHAI Minglei. Empirical formula for shear strength of marble joints infilled with sands[J]. Rock and Soil Mechanics, 2018, 39(11): 4102-4108. (in Chinese)
    [12]
    焦峰, 许江, 郭保华, 等. 充填厚度对岩石节理剪切强度影响的剪切试验研究[J]. 采矿与安全工程学报, 2022, 39(2): 405-412.

    JIAO Feng, XU Jiang, GUO Baohua, et al. A shear test study on the influence of filled thickness on the shear strength of rock joints[J]. Journal of Mining & Safety Engineering, 2022, 39(2): 405-412. (in Chinese)
    [13]
    许万忠, 林杭, 曹日红. 充填粗糙节理直剪数值模拟宏细观分析[J]. 西南交通大学学报, 2018, 53(3): 548-557. doi: 10.3969/j.issn.0258-2724.2018.03.016

    XU Wanzhong, LIN Hang, CAO Rihong. Simulation and macro-mesoscopic parameter analysis for direct shear of filled rough joints[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 548-557. (in Chinese) doi: 10.3969/j.issn.0258-2724.2018.03.016
    [14]
    GONG L B, NEMCIK J, REN T. Numerical simulation of the shear behavior of rock joints filled with unsaturated soil[J]. International Journal of Geomechanics, 2018, 18(9): 4018112. doi: 10.1061/(ASCE)GM.1943-5622.0001253
    [15]
    LIU X W, DENG W, LIU B, et al. Influence analysis on the shear behaviour and failure mode of grout-filled jointed rock using 3D DEM coupled with the cohesive zone model[J]. Computers and Geotechnics, 2023, 155: 105165. doi: 10.1016/j.compgeo.2022.105165
    [16]
    肖维民, 余欢, 朱占元, 等. 薄层充填岩石节理剪胀特性试验研究[J]. 岩土工程学报, 2020, 42(8): 1499-1508. doi: 10.11779/CJGE202008015

    XIAO Weimin, YU Huan, ZHU Zhanyuan, et al. Experimental study on shear dilatancy characteristics of thinly-infilled rock joints[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1499-1508. (in Chinese) doi: 10.11779/CJGE202008015
    [17]
    ZHAO Y L, ZHANG L Y, WANG W J, et al. Experimental study on shear behavior and a revised shear strength model for infilled rock joints[J]. International Journal of Geomechanics, 2020, 20(9): 04020141. doi: 10.1061/(ASCE)GM.1943-5622.0001781
    [18]
    PAPALIANGAS T, HENCHER S R, LUMSDEN A C, et al. The effect of frictional fill thickness on the shear strength of rock discontinuities[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(2): 81-91.
    [19]
    孙辅庭, 佘成学, 万利台. 充填水泥浆岩石节理峰值剪切强度模型[J]. 岩石力学与工程学报, 2014, 33(12): 2481-2489.

    SUN Futing, SHE Chengxue, WAN Litai. A peak shear strength model for cement filled rock joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2481-2489. (in Chinese)
    [20]
    SHE C X, SUN F T. Study of the peak shear strength of a cement-filled hard rock joint[J]. Rock Mechanics and Rock Engineering, 2018, 51(3): 713-728. doi: 10.1007/s00603-017-1358-0
    [21]
    修占国, 王述红, 王斐笠, 等. 充填体和围岩-充填体界面剪切特性对比试验研究[J]. 岩石力学与工程学报, 2021, 40(8): 1628-1642.

    XIU Zhanguo, WANG Shuhong, WANG Feili, et al. Comparative experimental study on the shear behavior of cemented paste backfill and surrounding rock-backfill interface[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(8): 1628-1642. (in Chinese)
    [22]
    罗战友, 黄斌, 杜时贵, 等. 基于形貌全覆盖的岩石结构面抗剪强度尺寸效应试验研究[J]. 岩石力学与工程学报, 2024, 43(2): 287-297.

    LUO Zhanyou, HUANG Bin, DU Shigui, et al. Experimental study on size effect of shear strength of rock joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(2): 287-297. (in Chinese)
    [23]
    BARTON N, CHOUBEY V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics, 1977, 10(1): 1-54.
    [24]
    TSE R, CRUDEN D M. Estimating joint roughness coefficients[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1979, 16(5): 303-307.
    [25]
    MURALHA J, GRASSELLI G, TATONE B, et al. ISRM suggested method for laboratory determination of the shear strength of rock joints: revised version[J]. Rock Mechanics and Rock Engineering, 2014, 47(1): 291-302. doi: 10.1007/s00603-013-0519-z
    [26]
    许江, 雷娇, 刘义鑫, 等. 充填物性质影响结构面剪切特性试验研究[J]. 岩土力学, 2019, 40(11): 4129-4137.

    XU Jiang, LEI Jiao, LIU Yixin, et al. Experimental study on shear behavior of joints filled with different materials[J]. Rock and Soil Mechanics, 2019, 40(11): 4129-4137. (in Chinese)
    [27]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
  • Related Articles

    [1]LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228
    [2]JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022
    [3]XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
    [4]HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
    [5]ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021
    [6]HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019
    [7]LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895.
    [8]LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648.
    [9]Microcosmic mechanism of ion transport in charged clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1794-1799.
    [10]XI Yong, Hui, REN Jie. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return