• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SONG Chao, ZHAO Tengyuan, XU Ling. Estimation of uniaxial compressive strength based on fully Bayesian Gaussian process regression and model selection[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1664-1673. DOI: 10.11779/CJGE20220734
Citation: SONG Chao, ZHAO Tengyuan, XU Ling. Estimation of uniaxial compressive strength based on fully Bayesian Gaussian process regression and model selection[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1664-1673. DOI: 10.11779/CJGE20220734

Estimation of uniaxial compressive strength based on fully Bayesian Gaussian process regression and model selection

More Information
  • Received Date: June 08, 2022
  • Available Online: February 26, 2023
  • In order to establish an optimal model for estimating the uniaxial compressive strength (UCS) of rocks as well as its reasonable estimation, a fully Bayesian Gaussian process regression method (fB-GPR) is proposed by combining the Gaussian process regression (GPR), Bayesian framework and Markov Chain Monte Carlo (MCMC) simulation. The proposed fB-GPR approach is compared with different model selection methods, such as the Akaike information criterion (AIC), Bayesian information criterion (BIC), deviation information criterion (DIC), Kullback information criterion (KIC), etc. The results show that the proposed fB-GPR method performs better than other methods. In 100 random trials, the probability of M-7 being selected as the optimal model by fB-GPR method reaches 100%, and the accuracy of selecting the optimal model is far higher than other model selection methods. When the measurement noise reaches 50% of UCS standard deviation, the proposed fB-GPR can still achieve model selection accurately, which shows that the fB-GPR approach is robust and accurate, and is less affected by the measurement noise associated with UCS, comparing with other model selection methods. The proposed fB-GPR therefore provides a new way for establishing the optimal estimation model as well as reasonable estimation for the key geotechnical parameters in practice.
  • [1]
    李文, 谭卓英. 基于P波模量的岩石单轴抗压强度预测[J]. 岩土力学, 2016, 37(增刊2): 381-387. doi: 10.16285/j.rsm.2016.S2.049

    LI Wen, TAN Zhuoying. Prediction of uniaxial compressive strength of rock based on P-wave modulus[J]. Rock and Soil Mechanics, 2016, 37(S2): 381-387. (in Chinese) doi: 10.16285/j.rsm.2016.S2.049
    [2]
    孙欢, 刘晓丽, 王恩志, 等. 基于X射线断层扫描预测岩石单轴抗压强度[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3575-3582. doi: 10.13722/j.cnki.jrme.2019.0614

    SUN Huan, LIU Xiaoli, WANG Enzhi, et al. Prediction on uniaxial compression strength of rocks with X-ray computed tomography[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3575-3582. (in Chinese) doi: 10.13722/j.cnki.jrme.2019.0614
    [3]
    沙鹏, 张庆同, 林军, 等. 基于点荷载强度的火成岩单轴抗压强度原位估算[J]. 岩土力学, 2020, 41(增刊2): 1-10. doi: 10.16285/j.rsm.2020.0371

    SHA Peng, ZHANG Qingtong, LIN Jun, et al. In-situ estimation of uniaxial compressive strength of igneous rock based on point load strength[J]. Rock and Soil Mechanics, 2020, 41(S2): 1-10. (in Chinese) doi: 10.16285/j.rsm.2020.0371
    [4]
    ÇELIK S B. Prediction of uniaxial compressive strength of carbonate rocks from nondestructive tests using multivariate regression and LS-SVM methods[J]. Arabian Journal of Geosciences, 2019, 12(6): 1-17.
    [5]
    LIU D S, LIU H L, WU Y, et al. Characterization of geo-material parameters: gene concept and big data approach in geotechnical engineering[J]. Geosystems and Geoenvironment, 2022, 1(1): 100003. doi: 10.1016/j.geogeo.2021.09.003
    [6]
    HAN L, WANG L, DING X M, et al. Similarity quantification of soil parametric data and sites using confidence ellipses[J]. Geoscience Frontiers, 2022, 13(1): 101280. doi: 10.1016/j.gsf.2021.101280
    [7]
    MATIN S S, FARAHZADI L, MAKAREMI S, et al. Variable selection and prediction of uniaxial compressive strength and modulus of elasticity by random forest[J]. Applied Soft Computing, 2018, 70: 980-987. doi: 10.1016/j.asoc.2017.06.030
    [8]
    FATTAHI H. Applying soft computing methods to predict the uniaxial compressive strength of rocks from Schmidt hammer rebound values[J]. Computational Geosciences, 2017, 21(4): 665-681. doi: 10.1007/s10596-017-9642-3
    [9]
    FENG X, JIMENEZ R. Estimation of deformation modulus of rock masses based on Bayesian model selection and Bayesian updating approach[J]. Engineering Geology, 2015, 199: 19–27. doi: 10.1016/j.enggeo.2015.10.002
    [10]
    WU Z X, JI H, YU C, et al. EPR-RCGA-based modelling of compression index and RMSE-AIC-BIC-based model selection for Chinese marine clays and their engineering application[J]. Journal of Zhejiang University-SCIENCE A, 2018, 19(3): 211-224. [LinkOut] doi: 10.1631/jzus.A1700089
    [11]
    NG I T, YUEN K V, LAU C H. Predictive model for uniaxial compressive strength for Grade Ⅲ granitic rocks from Macao[J]. Engineering Geology, 2015, 199: 28–37. doi: 10.1016/j.enggeo.2015.10.008
    [12]
    RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. Cambridge Mass: MIT Press, 2006.
    [13]
    苏国韶, 肖义龙. 边坡可靠度分析的高斯过程方法[J]. 岩土工程学报, 2011, 33(6): 916-920. http://www.cgejournal.com/cn/article/id/14030

    SU Guoshao, XIAO Yilong. Gaussian process method for slope reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 916-920. (in Chinese) http://www.cgejournal.com/cn/article/id/14030
    [14]
    赵腾远, 宋超, 何欢. 小样本条件下江苏软土路基回弹模量的贝叶斯估计——基于静力触探数据与高斯过程回归的建模分析[J]. 岩土工程学报, 2021, 43(增刊2): 137–141. doi: 10.11779/CJGE2021S2033

    ZHAO Tengyuan, SONG Chao, HE Huan. Bayesian estimation of resilient modulus of Jiangsu soft soils from sparse data—Gaussian process regression and cone penetration test data-based modelling and analysis[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 137–141. (in Chinese) doi: 10.11779/CJGE2021S2033
    [15]
    蒋水华, 刘源, 张小波, 等. 有限数据条件下空间变异岩土力学参数随机反演分析及比较[J]. 岩石力学与工程学报, 2020, 39(6): 1265–1276. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006017.htm

    JIANG Shuihua, LIU Yuan, ZHANG Xiaobo, et al. Stochastic back analysis and comparison of spatially varying geotechnical mechanical parameters based on limited data[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1265–1276. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006017.htm
    [16]
    VANHATALO J, RIIHIMÄKI J, HARTIKAINEN J, et al. GPstuff: Bayesian modeling with Gaussian processes[J]. Journal of Machine Learning Research, 2013, 14(1): 1175-1179.
    [17]
    仉文岗, 顾鑫, 刘汉龙, 等. 基于贝叶斯更新的非饱和土坡参数概率反演及变形预测[J]. 岩土力学, 2022, 43(4): 1112–1122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202204024.htm

    ZHANG Wengang, GU Xin, LIU Hanlong, et al. Probabilistic back analysis of soil parameters and displacement prediction of unsaturated slopes using Bayesian updating[J]. Rock and Soil Mechanics, 2022, 43(4): 1112-1122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202204024.htm
    [18]
    ZHAO T Y, SONG C, LU S F, et al. Prediction of uniaxial compressive strength using fully Bayesian Gaussian process regression (fB-GPR) with model class selection[J]. Rock Mechanics and Rock Engineering, 2022, 55(10): 6301-6319.
    [19]
    CZADO C. Analyzing dependent data with vine copulas[J]. Lecture Notes in Statistics, Springer, 2019.
    [20]
    付代光, 刘江平, 周黎明, 等. 基于贝叶斯理论的软夹层多模式瑞雷波频散曲线反演研究[J]. 岩土工程学报, 2015, 37(2): 321-329. doi: 10.11779/CJGE201502016

    FU Daiguang, LIU Jiangping, ZHOU Liming, et al. Inversion of multimode Rayleigh-wave dispersion curves of soft interlayer based on Bayesian theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 321-329. (in Chinese) doi: 10.11779/CJGE201502016
    [21]
    唐小松, 李典庆, 周创兵, 等. 基于Bootstrap方法的岩土体参数联合分布模型识别[J]. 岩土力学, 2015, 36(4): 913-922. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201504001.htm

    TANG Xiaosong, LI Dianqing, ZHOU Chuangbing, et al. Bootstrap method for joint probability distribution identification of correlated geotechnical parameters[J]. Rock and Soil Mechanics, 2015, 36(4): 913-922. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201504001.htm
    [22]
    HURVICH C M, TSAI C L. Regression and time series model selection in small samples[J]. Biometrika, 1989, 76(2): 297-307.
    [23]
    SPIEGELHALTER D J, BEST N G, CARLIN B P, et al. Bayesian measures of model complexity and fit[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2002, 64(4): 583-639.
    [24]
    CAVANAUGH J E. A large-sample model selection criterion based on Kullback's symmetric divergence[J]. Statistics & Probability Letters, 1999, 42(4): 333-343.
    [25]
    SEGHOUANE A K. Multivariate regression model selection from small samples using Kullback's symmetric divergence[J]. Signal Processing, 2006, 86(8): 2074-2084.
  • Related Articles

    [1]LUAN Shaokai, CHEN Su, DING Yi, JIN Liguo, WANG Juke, LI Xiaojun. Wave simulation of symmetric V-shaped canyon based on physics-informed deep learning method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1246-1253. DOI: 10.11779/CJGE20230263
    [2]Research on machine learning model for refined inversion of mechanical parameters of surrounding rock considering zonal deterioration[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240641
    [3]WANG Yuke, FENG Shuang, ZHONG Yanhui, ZHANG Bei. A data-driven model for predicting shear strength indexes of normally consolidated soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 183-188. DOI: 10.11779/CJGE2023S20025
    [4]ZHANG De, ZHANG Zechao, ZHANG Lulu, ZHANG Jie, CAO Zijun. Bayesian estimation of probability distributions of undrained shear strength of soils with limited site data[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1259-1268. DOI: 10.11779/CJGE20220299
    [5]TAO Yuan-qin, SUN Hong-lei, CAI Yuan-qiang. Bayesian back analysis considering constraints[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1878-1886. DOI: 10.11779/CJGE202110014
    [6]LIU Fei-yue, LIU Yi-han, YANG Tian-hong, XIN Jun-chang, ZHANG Peng-hai, DONG Xin, ZHANG Hai-tao. Meticulous evaluation of rock mass quality in mine engineering based on machine learning of core photos[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 968-974. DOI: 10.11779/CJGE202105023
    [7]LIU Hou-xiang, LI Wang-shi, ZHA Zhuan-yi, JIANG Wu-jun, XU Teng. Method for surrounding rock mass classification of highway tunnels based on deep learning technology[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1809-1817. DOI: 10.11779/CJGE201810007
    [8]ZHANG Li-song, YAN Xiang-zhen, YANG Heng-lin, YANG Xiu-juan. GSI-JP crushed classification prediction methodof coal rock based on logging information[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1091-1096.
    [9]SU Guo-shao, XIAO Yi-long. Gaussian process method for slope reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 916.
    [10]LIU Kaiyun, QIAO Chunsheng, TENG Wenyan. Research on non-linear time sequence intelligent model construction and prediction of slope displacement by using support vector machine algorithm[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 57-61.
  • Cited by

    Periodical cited type(8)

    1. 张奥宇,杨科,池小楼,张杰. 基于GA-BP神经网络岩石单轴抗压强度预测模型研究. 煤. 2025(01): 6-10+17 .
    2. 宋超,赵腾远. 黏土路基回弹模量预测及贝叶斯模型选择研究. 长沙理工大学学报(自然科学版). 2024(01): 88-99 .
    3. 王彦武,郭青林,赵腾远,张燕芳,刘晓颖,裴强强,朱毓. 基于温度补偿的5TE传感器含水率监测数据校正方法研究. 石窟与土遗址保护研究. 2024(01): 4-16 .
    4. 陈朗,陈娱,何俊霖,吕淑宁. 基于前期累积降雨和高斯过程回归模型的滑坡位移预测. 岩石力学与工程学报. 2024(S1): 3491-3497 .
    5. 郑可馨,吴益平,李江,苗发盛,柯超. 基于高斯过程回归的岩体结构面粗糙度系数预测模型. 地质科技通报. 2024(04): 252-261 .
    6. 刘杰. 基于高斯过程时间序列回归最优核函数和历史点数的锚杆支护钻进压力预测. 煤炭学报. 2024(S1): 92-107 .
    7. 原钢,刘杰. 基于多参数输入与输出高斯过程回归的锚杆支护状态预测. 液压气动与密封. 2023(11): 47-50 .
    8. 赵腾远,宋超,谌文武,郭志谦,许领. 基于k-means聚类与高斯过程分类的土遗址裂隙病害发育等级概率预测. 石窟与土遗址保护研究. 2023(04): 75-86 .

    Other cited types(1)

Catalog

    Article views (492) PDF downloads (164) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return