Citation: | SONG Chao, ZHAO Tengyuan, XU Ling. Estimation of uniaxial compressive strength based on fully Bayesian Gaussian process regression and model selection[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1664-1673. DOI: 10.11779/CJGE20220734 |
[1] |
李文, 谭卓英. 基于P波模量的岩石单轴抗压强度预测[J]. 岩土力学, 2016, 37(增刊2): 381-387. doi: 10.16285/j.rsm.2016.S2.049
LI Wen, TAN Zhuoying. Prediction of uniaxial compressive strength of rock based on P-wave modulus[J]. Rock and Soil Mechanics, 2016, 37(S2): 381-387. (in Chinese) doi: 10.16285/j.rsm.2016.S2.049
|
[2] |
孙欢, 刘晓丽, 王恩志, 等. 基于X射线断层扫描预测岩石单轴抗压强度[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3575-3582. doi: 10.13722/j.cnki.jrme.2019.0614
SUN Huan, LIU Xiaoli, WANG Enzhi, et al. Prediction on uniaxial compression strength of rocks with X-ray computed tomography[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3575-3582. (in Chinese) doi: 10.13722/j.cnki.jrme.2019.0614
|
[3] |
沙鹏, 张庆同, 林军, 等. 基于点荷载强度的火成岩单轴抗压强度原位估算[J]. 岩土力学, 2020, 41(增刊2): 1-10. doi: 10.16285/j.rsm.2020.0371
SHA Peng, ZHANG Qingtong, LIN Jun, et al. In-situ estimation of uniaxial compressive strength of igneous rock based on point load strength[J]. Rock and Soil Mechanics, 2020, 41(S2): 1-10. (in Chinese) doi: 10.16285/j.rsm.2020.0371
|
[4] |
ÇELIK S B. Prediction of uniaxial compressive strength of carbonate rocks from nondestructive tests using multivariate regression and LS-SVM methods[J]. Arabian Journal of Geosciences, 2019, 12(6): 1-17.
|
[5] |
LIU D S, LIU H L, WU Y, et al. Characterization of geo-material parameters: gene concept and big data approach in geotechnical engineering[J]. Geosystems and Geoenvironment, 2022, 1(1): 100003. doi: 10.1016/j.geogeo.2021.09.003
|
[6] |
HAN L, WANG L, DING X M, et al. Similarity quantification of soil parametric data and sites using confidence ellipses[J]. Geoscience Frontiers, 2022, 13(1): 101280. doi: 10.1016/j.gsf.2021.101280
|
[7] |
MATIN S S, FARAHZADI L, MAKAREMI S, et al. Variable selection and prediction of uniaxial compressive strength and modulus of elasticity by random forest[J]. Applied Soft Computing, 2018, 70: 980-987. doi: 10.1016/j.asoc.2017.06.030
|
[8] |
FATTAHI H. Applying soft computing methods to predict the uniaxial compressive strength of rocks from Schmidt hammer rebound values[J]. Computational Geosciences, 2017, 21(4): 665-681. doi: 10.1007/s10596-017-9642-3
|
[9] |
FENG X, JIMENEZ R. Estimation of deformation modulus of rock masses based on Bayesian model selection and Bayesian updating approach[J]. Engineering Geology, 2015, 199: 19–27. doi: 10.1016/j.enggeo.2015.10.002
|
[10] |
WU Z X, JI H, YU C, et al. EPR-RCGA-based modelling of compression index and RMSE-AIC-BIC-based model selection for Chinese marine clays and their engineering application[J]. Journal of Zhejiang University-SCIENCE A, 2018, 19(3): 211-224. [LinkOut] doi: 10.1631/jzus.A1700089
|
[11] |
NG I T, YUEN K V, LAU C H. Predictive model for uniaxial compressive strength for Grade Ⅲ granitic rocks from Macao[J]. Engineering Geology, 2015, 199: 28–37. doi: 10.1016/j.enggeo.2015.10.008
|
[12] |
RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. Cambridge Mass: MIT Press, 2006.
|
[13] |
苏国韶, 肖义龙. 边坡可靠度分析的高斯过程方法[J]. 岩土工程学报, 2011, 33(6): 916-920. http://www.cgejournal.com/cn/article/id/14030
SU Guoshao, XIAO Yilong. Gaussian process method for slope reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 916-920. (in Chinese) http://www.cgejournal.com/cn/article/id/14030
|
[14] |
赵腾远, 宋超, 何欢. 小样本条件下江苏软土路基回弹模量的贝叶斯估计——基于静力触探数据与高斯过程回归的建模分析[J]. 岩土工程学报, 2021, 43(增刊2): 137–141. doi: 10.11779/CJGE2021S2033
ZHAO Tengyuan, SONG Chao, HE Huan. Bayesian estimation of resilient modulus of Jiangsu soft soils from sparse data—Gaussian process regression and cone penetration test data-based modelling and analysis[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 137–141. (in Chinese) doi: 10.11779/CJGE2021S2033
|
[15] |
蒋水华, 刘源, 张小波, 等. 有限数据条件下空间变异岩土力学参数随机反演分析及比较[J]. 岩石力学与工程学报, 2020, 39(6): 1265–1276. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006017.htm
JIANG Shuihua, LIU Yuan, ZHANG Xiaobo, et al. Stochastic back analysis and comparison of spatially varying geotechnical mechanical parameters based on limited data[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1265–1276. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006017.htm
|
[16] |
VANHATALO J, RIIHIMÄKI J, HARTIKAINEN J, et al. GPstuff: Bayesian modeling with Gaussian processes[J]. Journal of Machine Learning Research, 2013, 14(1): 1175-1179.
|
[17] |
仉文岗, 顾鑫, 刘汉龙, 等. 基于贝叶斯更新的非饱和土坡参数概率反演及变形预测[J]. 岩土力学, 2022, 43(4): 1112–1122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202204024.htm
ZHANG Wengang, GU Xin, LIU Hanlong, et al. Probabilistic back analysis of soil parameters and displacement prediction of unsaturated slopes using Bayesian updating[J]. Rock and Soil Mechanics, 2022, 43(4): 1112-1122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202204024.htm
|
[18] |
ZHAO T Y, SONG C, LU S F, et al. Prediction of uniaxial compressive strength using fully Bayesian Gaussian process regression (fB-GPR) with model class selection[J]. Rock Mechanics and Rock Engineering, 2022, 55(10): 6301-6319.
|
[19] |
CZADO C. Analyzing dependent data with vine copulas[J]. Lecture Notes in Statistics, Springer, 2019.
|
[20] |
付代光, 刘江平, 周黎明, 等. 基于贝叶斯理论的软夹层多模式瑞雷波频散曲线反演研究[J]. 岩土工程学报, 2015, 37(2): 321-329. doi: 10.11779/CJGE201502016
FU Daiguang, LIU Jiangping, ZHOU Liming, et al. Inversion of multimode Rayleigh-wave dispersion curves of soft interlayer based on Bayesian theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 321-329. (in Chinese) doi: 10.11779/CJGE201502016
|
[21] |
唐小松, 李典庆, 周创兵, 等. 基于Bootstrap方法的岩土体参数联合分布模型识别[J]. 岩土力学, 2015, 36(4): 913-922. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201504001.htm
TANG Xiaosong, LI Dianqing, ZHOU Chuangbing, et al. Bootstrap method for joint probability distribution identification of correlated geotechnical parameters[J]. Rock and Soil Mechanics, 2015, 36(4): 913-922. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201504001.htm
|
[22] |
HURVICH C M, TSAI C L. Regression and time series model selection in small samples[J]. Biometrika, 1989, 76(2): 297-307.
|
[23] |
SPIEGELHALTER D J, BEST N G, CARLIN B P, et al. Bayesian measures of model complexity and fit[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2002, 64(4): 583-639.
|
[24] |
CAVANAUGH J E. A large-sample model selection criterion based on Kullback's symmetric divergence[J]. Statistics & Probability Letters, 1999, 42(4): 333-343.
|
[25] |
SEGHOUANE A K. Multivariate regression model selection from small samples using Kullback's symmetric divergence[J]. Signal Processing, 2006, 86(8): 2074-2084.
|
[1] | LUAN Shaokai, CHEN Su, DING Yi, JIN Liguo, WANG Juke, LI Xiaojun. Wave simulation of symmetric V-shaped canyon based on physics-informed deep learning method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1246-1253. DOI: 10.11779/CJGE20230263 |
[2] | Research on machine learning model for refined inversion of mechanical parameters of surrounding rock considering zonal deterioration[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240641 |
[3] | WANG Yuke, FENG Shuang, ZHONG Yanhui, ZHANG Bei. A data-driven model for predicting shear strength indexes of normally consolidated soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 183-188. DOI: 10.11779/CJGE2023S20025 |
[4] | ZHANG De, ZHANG Zechao, ZHANG Lulu, ZHANG Jie, CAO Zijun. Bayesian estimation of probability distributions of undrained shear strength of soils with limited site data[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1259-1268. DOI: 10.11779/CJGE20220299 |
[5] | TAO Yuan-qin, SUN Hong-lei, CAI Yuan-qiang. Bayesian back analysis considering constraints[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1878-1886. DOI: 10.11779/CJGE202110014 |
[6] | LIU Fei-yue, LIU Yi-han, YANG Tian-hong, XIN Jun-chang, ZHANG Peng-hai, DONG Xin, ZHANG Hai-tao. Meticulous evaluation of rock mass quality in mine engineering based on machine learning of core photos[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 968-974. DOI: 10.11779/CJGE202105023 |
[7] | LIU Hou-xiang, LI Wang-shi, ZHA Zhuan-yi, JIANG Wu-jun, XU Teng. Method for surrounding rock mass classification of highway tunnels based on deep learning technology[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1809-1817. DOI: 10.11779/CJGE201810007 |
[8] | ZHANG Li-song, YAN Xiang-zhen, YANG Heng-lin, YANG Xiu-juan. GSI-JP crushed classification prediction methodof coal rock based on logging information[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1091-1096. |
[9] | SU Guo-shao, XIAO Yi-long. Gaussian process method for slope reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 916. |
[10] | LIU Kaiyun, QIAO Chunsheng, TENG Wenyan. Research on non-linear time sequence intelligent model construction and prediction of slope displacement by using support vector machine algorithm[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 57-61. |