• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HONG Zequn, SHI Rongjian, YUE Fengtian, HAN Lei. Analytical solutions of steady-state temperature field for large-section freezing with rectangular layout of single-ring holes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1653-1663. DOI: 10.11779/CJGE20220700
Citation: HONG Zequn, SHI Rongjian, YUE Fengtian, HAN Lei. Analytical solutions of steady-state temperature field for large-section freezing with rectangular layout of single-ring holes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1653-1663. DOI: 10.11779/CJGE20220700

Analytical solutions of steady-state temperature field for large-section freezing with rectangular layout of single-ring holes

More Information
  • Received Date: May 31, 2022
  • Available Online: February 26, 2023
  • The temperature field is the basis for assessing the mechanical state and water-sealing performance of the frozen wall, which is an important research direction of the artificial freezing theory. For the freezing pipes in the form of a closed circumferential arrangement, there are only analytical solutions under regular annular conditions, including single-circle and double-circle models. However, the rectangular arrangement of freezing pipes is also very common in practical projects, especially for the subway station projects that use frozen concealed excavation, and the temperature field has not yet been answered. According to the geometric consistency of rectangular and annular layouts, based on the four-pipe model, a method of "replacing squares with circles" is firstly proposed for the rectangular problem. Furthermore, considering the boundary separable properties of the steady-state heat conduction control equation and the superposition principle of potential functions, the analytical solutions of the temperature field for rectangular arrangement with eight pipes and the generalized rectangular arrangement with multiple pipes are solved. By comparing with the transient numerical results the model test ones, the correctness and the applicability of the analytical solutions are verified. The results show that the temperature field exhibits a highly rectangular distribution characteristic near the pipe layout line, and the isotherm gradually transforms to a circular shape as it moves away from the freezing pipes. The inner side of the rectangular freezing wall develops faster than the outer side, and the temperature field inside and outside the 0℃ line is significantly affected. The influences of the freezing pipe arrangement on the geometric characteristics of the freezing wall should be reasonably considered in the design of freezing scheme.
  • [1]
    鲁先龙, 陈湘生, 陈曦. 人工地层冻结法风险预控[J]. 岩土工程学报, 2021, 43(12): 2308-2314. doi: 10.11779/CJGE202112018

    LU Xianlong, CHEN Xiangsheng, CHEN Xi. Risk prevention and control of artificial ground freezing(AGF)[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2308-2314. (in Chinese) doi: 10.11779/CJGE202112018
    [2]
    王鹏, 林斌, 侯海杰, 等. 冻结管布置形式对冻结壁温度场发展规律影响研究[J]. 煤炭科学技术, 2019, 47(12): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201912006.htm

    WANG Peng, LIN Bin, HOU Haijie, et al. Study on influence of freezing tubes layout on development law of temperature field of freezing wall[J]. Coal Science and Technology, 2019, 47(12): 38-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201912006.htm
    [3]
    TRUPAK N. Ground Freezing in Shaft Sinking[M]. Moscow: Coal Technology Press, 1954: 20-65.
    [4]
    BAKHOLDIN B. Selection of Optimized Mode of Ground Freezing for Construction Purpose[M]. Moscow: State Construction Press, 1963: 21-27.
    [5]
    侯运炳, 贾进峰, 赵易鑫, 等. 大断面斜井冻结施工多排管冻结温度场模拟研究[J]. 煤炭工程, 2012, 44(12): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201212028.htm

    HOU Yunbing, JIA Jinfeng, ZHAO Yixin, et al. Simulation study on freezing temperature field with multi row freezing tubes in construction of large cross section mine inclined shaft[J]. Coal Engineering, 2012, 44(12): 77-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201212028.htm
    [6]
    胡向东, 韩延广. 环形单圈管冻结稳态温度场一般解析解[J]. 中南大学学报(自然科学版), 2015, 46(6): 2342-2349. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201506047.htm

    HU Xiangdong, HAN Yanguang. General analytical solution to steady-state temperature field of single-circle-pipe freezing[J]. Journal of Central South University (Science and Technology), 2015, 46(6): 2342-2349. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201506047.htm
    [7]
    胡向东, 方涛, 韩延广. 环形双圈管冻结稳态温度场广义解析解[J]. 煤炭学报, 2017, 42(9): 2287-2294. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201709011.htm

    HU Xiangdong, FANG Tao, HAN Yanguang. Generalized analytical solution to steady-state temperature field of double-circle-piped freezing[J]. Journal of China Coal Society, 2017, 42(9): 2287-2294. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201709011.htm
    [8]
    汪仁和, 李栋伟. 人工多圈管冻结水热耦合数值模拟研究[J]. 岩石力学与工程学报, 2007, 26(2): 355-359. doi: 10.3321/j.issn:1000-6915.2007.02.017

    WANG Renhe, LI Dongwei. Research on hydro-thermal coupling numerical simulation with artificial multi-freezing-tube cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(2): 355-359. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.02.017
    [9]
    蒋斌松, 沈春儒, 冯强. 外壁恒温条件下单管冻结温度场解析计算[J]. 煤炭学报, 2010, 35(6): 923-927. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201006013.htm

    JIANG Binsong, SHEN Chunru, FENG Qiang. Analytical formulation of temperature field of single freezing pipe with constant outer surface temperature[J]. Journal of China Coal Society, 2010, 35(6): 923-927. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201006013.htm
    [10]
    汪仁和, 王伟. 冻结孔偏斜下冻结壁温度场的形成特征与分析[J]. 岩土工程学报, 2003, 25(6): 658-661. http://www.cgejournal.com/cn/article/id/11293

    WANG Renhe, WANG Wei. Analysis for features of the freezing temperature field under deflective pipes[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(6): 658-661. (in Chinese) http://www.cgejournal.com/cn/article/id/11293
    [11]
    王申杰. 深立井冻结管偏斜对温度场及冻结压力的影响研究[D]. 淮南: 安徽理工大学, 2017.

    WANG Shenjie. Study on the Influence of Freezing Pipe Deviation on Temperature Field and Freezing Pressure in Deep Shaft[D]. Huainan: Anhui University of Science & Technology, 2017. (in Chinese)
    [12]
    杨平, 皮爱如. 高流速地下水流地层冻结壁形成的研究[J]. 岩土工程学报, 2001, 23(2): 167-171. http://www.cgejournal.com/cn/article/id/10689

    YANG Ping, PI Airu. Study on the effects of large groundwater flow velocity on the formation of frozen wall[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 167-171. (in Chinese) http://www.cgejournal.com/cn/article/id/10689
    [13]
    周晓敏, 王梦恕, 张绪忠. 渗流作用下地层冻结壁形成的模型试验研究[J]. 煤炭学报, 2005, 30(2): 196-201. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB20050200D.htm

    ZHOU Xiaomin, WANG Mengshu, ZHANG Xuzhong. Model test research on the formation of freezing wall in seepage ground[J]. Journal of China Coal Society, 2005, 30(2): 196-201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB20050200D.htm
    [14]
    WANG B, RONG C X, CHENG H, et al. Temporal and spatial evolution of temperature field of single freezing pipe in large velocity infiltration configuration[J]. Cold Regions Science and Technology, 2020, 175: 103080.
    [15]
    HUANG S B, GUO Y L, LIU Y Z, et al. Study on the influence of water flow on temperature around freeze pipes and its distribution optimization during artificial ground freezing[J]. Applied Thermal Engineering, 2018, 135: 435-445.
    [16]
    程桦, 姚直书, 张经双, 等. 人工水平冻结法施工隧道冻胀与融沉效应模型试验研究[J]. 土木工程学报, 2007, 40(10): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200710015.htm

    CHENG Hua, YAO Zhishu, ZHANG Jingshuang, et al. A model test study on the effect of freeze heaving and thaw subsidence for tunnel construction with artificial horizontal ground freezing[J]. China Civil Engineering Journal, 2007, 40(10): 80-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200710015.htm
    [17]
    蔡海兵, 彭立敏, 郑腾龙. 隧道水平冻结施工引起地表冻胀的历时预测模型[J]. 岩土力学, 2012, 33(6): 1761-1768. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201206024.htm

    CAI Haibing, PENG Limin, ZHENG Tenglong. A duration prediction model of surface frost heave induced by tunnelling with horizontal freezing method[J]. Rock and Soil Mechanics, 2012, 33(6): 1761-1768. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201206024.htm
    [18]
    CAI H B, HONG R B, XU L X, et al. Frost heave and thawing settlement of the ground after using a freeze-sealing pipe-roof method in the construction of the Gongbei Tunnel[J]. Tunnelling and Underground Space Technology, 2022, 125: 104503.
    [19]
    李文涛, 盛小飞, 张逸民. 矩形冻结帷幕施工技术及实践应用[J]. 采矿与安全工程学报, 2013, 30(增刊1): 139-141.

    LI Wen-tao, SHENG Xiao-fei, ZHANG Yi-min. Construction technology and practical applications of rectangular frozen wall [J]. Journal of Mining & Safety Engineering. 2013, 30(S1): 139-14. (in Chinese)
    [20]
    张晋勋, 亓轶, 杨昊, 等. 北京砂卵石地层渗流条件下多排管局部冻结水平板成形规律研究[J]. 岩石力学与工程学报, 2020, 39(增刊1): 3188-3196. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1061.htm

    ZHANG Jinxun, QI Yi, YANG Hao, et al. Formation rules of horizontal frozen plate with multiple rows in Beijing sandy gravel stratum under seepage condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 3188-3196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1061.htm
    [21]
    QI Y, ZHANG J X, YANG H, et al. Application of artificial ground freezing technology in modern urban underground engineering[J]. Advances in Materials Science and Engineering, 2020, 2020: 1-12.
    [22]
    方忠强, 孙晓锋, 陈磊. 冻结暗挖法在地铁车站附属结构中的应用[J]. 城市轨道交通研究, 2015, 18(2): 106-110. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201502029.htm

    FANG Zhongqiang, SUN Xiaofeng, CHEN Lei. Application of freeze excavation method in attached structure of subway station[J]. Urban Mass Transit, 2015, 18(2): 106-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201502029.htm
    [23]
    商厚胜, 岳丰田, 石荣剑. 浅覆土下矩形冻结加固的模型试验研究[J]. 岩土力学, 2014, 35(增刊2): 149-155, 161. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S2020.htm

    SHANG Housheng, YUE Fengtian, SHI Rongjian. Model test of artificial ground freezing in shallow-buried rectangular cemented soil[J]. Rock and Soil Mechanics, 2014, 35(S2): 149-155, 161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S2020.htm
    [24]
    HU X D, SHE S Y. Study of freezing scheme in freeze-sealing pipe roof method based on numerical simulation of temperature field[C]// ICPTT 2012. Wuhan, China. Reston, VA: American Society of Civil Engineers, 2012: 1798-1805.
  • Related Articles

    [1]LUAN Shaokai, CHEN Su, DING Yi, JIN Liguo, WANG Juke, LI Xiaojun. Wave simulation of symmetric V-shaped canyon based on physics-informed deep learning method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1246-1253. DOI: 10.11779/CJGE20230263
    [2]Research on machine learning model for refined inversion of mechanical parameters of surrounding rock considering zonal deterioration[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240641
    [3]WANG Yuke, FENG Shuang, ZHONG Yanhui, ZHANG Bei. A data-driven model for predicting shear strength indexes of normally consolidated soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 183-188. DOI: 10.11779/CJGE2023S20025
    [4]ZHANG De, ZHANG Zechao, ZHANG Lulu, ZHANG Jie, CAO Zijun. Bayesian estimation of probability distributions of undrained shear strength of soils with limited site data[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1259-1268. DOI: 10.11779/CJGE20220299
    [5]TAO Yuan-qin, SUN Hong-lei, CAI Yuan-qiang. Bayesian back analysis considering constraints[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1878-1886. DOI: 10.11779/CJGE202110014
    [6]LIU Fei-yue, LIU Yi-han, YANG Tian-hong, XIN Jun-chang, ZHANG Peng-hai, DONG Xin, ZHANG Hai-tao. Meticulous evaluation of rock mass quality in mine engineering based on machine learning of core photos[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 968-974. DOI: 10.11779/CJGE202105023
    [7]LIU Hou-xiang, LI Wang-shi, ZHA Zhuan-yi, JIANG Wu-jun, XU Teng. Method for surrounding rock mass classification of highway tunnels based on deep learning technology[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1809-1817. DOI: 10.11779/CJGE201810007
    [8]ZHANG Li-song, YAN Xiang-zhen, YANG Heng-lin, YANG Xiu-juan. GSI-JP crushed classification prediction methodof coal rock based on logging information[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1091-1096.
    [9]SU Guo-shao, XIAO Yi-long. Gaussian process method for slope reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 916.
    [10]LIU Kaiyun, QIAO Chunsheng, TENG Wenyan. Research on non-linear time sequence intelligent model construction and prediction of slope displacement by using support vector machine algorithm[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 57-61.
  • Cited by

    Periodical cited type(8)

    1. 张奥宇,杨科,池小楼,张杰. 基于GA-BP神经网络岩石单轴抗压强度预测模型研究. 煤. 2025(01): 6-10+17 .
    2. 宋超,赵腾远. 黏土路基回弹模量预测及贝叶斯模型选择研究. 长沙理工大学学报(自然科学版). 2024(01): 88-99 .
    3. 王彦武,郭青林,赵腾远,张燕芳,刘晓颖,裴强强,朱毓. 基于温度补偿的5TE传感器含水率监测数据校正方法研究. 石窟与土遗址保护研究. 2024(01): 4-16 .
    4. 陈朗,陈娱,何俊霖,吕淑宁. 基于前期累积降雨和高斯过程回归模型的滑坡位移预测. 岩石力学与工程学报. 2024(S1): 3491-3497 .
    5. 郑可馨,吴益平,李江,苗发盛,柯超. 基于高斯过程回归的岩体结构面粗糙度系数预测模型. 地质科技通报. 2024(04): 252-261 .
    6. 刘杰. 基于高斯过程时间序列回归最优核函数和历史点数的锚杆支护钻进压力预测. 煤炭学报. 2024(S1): 92-107 .
    7. 原钢,刘杰. 基于多参数输入与输出高斯过程回归的锚杆支护状态预测. 液压气动与密封. 2023(11): 47-50 .
    8. 赵腾远,宋超,谌文武,郭志谦,许领. 基于k-means聚类与高斯过程分类的土遗址裂隙病害发育等级概率预测. 石窟与土遗址保护研究. 2023(04): 75-86 .

    Other cited types(1)

Catalog

    Article views (273) PDF downloads (68) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return