• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZUO Zheng, YANG Guang-qing, WANG He, XU Lin-ying, JIN Jing, LIANG Xun-mei. Effects of geocell size on shear behavior of reinforced soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1053-1060. DOI: 10.11779/CJGE202206009
Citation: ZUO Zheng, YANG Guang-qing, WANG He, XU Lin-ying, JIN Jing, LIANG Xun-mei. Effects of geocell size on shear behavior of reinforced soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1053-1060. DOI: 10.11779/CJGE202206009

Effects of geocell size on shear behavior of reinforced soil

More Information
  • Received Date: June 21, 2021
  • Available Online: September 22, 2022
  • The geocell-reinforced structures (GRS) are widely adopted in transportation infrastructure such as highways and railways due to their good seismic performance, simple construction and low cost. At present, in GRS study, only the tensile strength of geocells is considered, the effects of geocell size of geometry are not considered, so the selection of geocells mainly depends on engineering experience. The effects of geocell strip height, junction spacing and normal stress on the shear mechanical characteristics of geocell-reinforced gravel sand are studied by conducting a series of laboratory direct shear tests on five types of geocells. The reinforcement effects of different normal stresses and geocell sizes are evaluated by introducing the reinforced strength coefficient. Finally, the influences of geocell size on shear strength parameters are analyzed. It is determined that the geocell with different sizes can effectively improve the shear strength of reinforced structures, and the shear strength increases with the increase of strip height and the decrease of junction spacing. Meanwhile, the contribution of the strip height to the shear strength is about 1.8 times that of the junction spacing. The shear strength of geocell reinforced gravel sand increases with the increase of normal stress, but its reinforced strength coefficient decreases with the increase of normal stress. Under 50 kPa, the increase of strip height to the reinforced strength coefficient is more than 12.57%, while the increase of junction spacing to the reinforced strength coefficient is less than 3.80%. The geocell reinforcement can significantly improve the cohesion of infill materials, especially the strip height, with an increase of about 25%, the increase of internal friction angle is relatively small, and the maximum increment is 5.11°. The test results can provide an experimental basis for the application of geocells in practical engineering and theoretical researches.
  • [1]
    杨广庆, 左政, 刘英, 等. 土工格室条带拉伸力学特性试验研究[J]. 岩土工程学报, 2021, 43(4): 760–767. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202104023.htm

    YANG Guang-qing, ZUO Zheng, LIU Ying, et al. Experimental investigations on tensile mechanical properties of geocell strips[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 760–767. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202104023.htm
    [2]
    曹文昭, 郑俊杰, 严勇. 桩承式变刚度加筋垫层复合地基数值模拟[J]. 岩土工程学报, 2017, 39(增刊2): 83–86. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S2022.htm

    CAO Wen-zhao, ZHENG Jun-jie, YAN Yong. Numerical simulation of composite foundation using pile-supported and geosynthetics-reinforced cushion with variable stiffness[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 83–86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S2022.htm
    [3]
    晏长根, 顾良军, 杨晓华, 等. 土工格室加筋黄土的三轴剪切性能[J]. 中国公路学报, 2017, 30(10): 17–24. doi: 10.3969/j.issn.1001-7372.2017.10.003

    YAN Chang-gen, GU Liang-jun, YANG Xiao-hua, et al. Triaxial shear property of geocell-reinforced loess[J]. China Journal of Highway and Transport, 2017, 30(10): 17–24. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.10.003
    [4]
    GARCIA R S, AVESANI NETO J O. Stress-dependent method for calculating the modulus improvement factor in geocell-reinforced soil layers[J]. Geotextiles and Geomembranes, 2021, 49(1): 146–158. doi: 10.1016/j.geotexmem.2020.09.009
    [5]
    李丽华, 崔飞龙, 肖衡林, 等. 轮胎与格室加筋路堤性能及承载力研究[J]. 岩土工程学报, 2017, 39(1): 81–88. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701008.htm

    LI Li-hua, CUI Fei-long, XIAO Heng-lin, et al. Performance and bearing capacity of embankments reinforced with waste tires and geocells[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 81–88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701008.htm
    [6]
    HEGDE A. Geocell reinforced foundation beds-past findings, present trends and future prospects: a state-of-the-art review[J]. Construction and Building Materials, 2017, 154: 658–674. doi: 10.1016/j.conbuildmat.2017.07.230
    [7]
    LIU Y, DENG A, JAKSA M. Failure mechanisms of geocell walls and junctions[J]. Geotextiles and Geomembranes, 2019, 47(2): 104–120. doi: 10.1016/j.geotexmem.2018.11.003
    [8]
    左政, 杨广庆, 刘英, 等. 土工格室不同结点连接方式失效机制试验研究[J]. 岩土工程学报, 2021, 43(9): 1682–1690. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109018.htm

    ZUO Zheng, YANG Guang-qing, LIU Ying, et al. Experimental investigations on failure mechanism of different junction connections of geocells[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1682–1690. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109018.htm
    [9]
    SONG F, LIU H B, MA L Q, et al. Numerical analysis of geocell-reinforced retaining wall failure modes[J]. Geotextiles and Geomembranes, 2018, 46(3): 284–296. doi: 10.1016/j.geotexmem.2018.01.004
    [10]
    KHORSANDIARDEBILI N, GHAZAVI M. Static stability analysis of geocell-reinforced slopes[J]. Geotextiles and Geomembranes, 2021, 49(3): 852–863. doi: 10.1016/j.geotexmem.2020.12.012
    [11]
    赵明华, 陈大兴, 刘猛, 等. 考虑土拱效应影响的路堤荷载下土工格室加筋体变形分析[J]. 岩土工程学报, 2020, 42(4): 601–609. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004003.htm

    ZHAO Ming-hua, CHEN Da-xing, LIU Meng, et al. Deformation analysis of geocell-reinforced body under embankment load considering soil arch effect[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 601–609. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004003.htm
    [12]
    BANERJEE L, CHAWLA S, KUMAR DASH S. Application of geocell reinforced coal mine overburden waste as subballast in railway tracks on weak subgrade[J]. Construction and Building Materials, 2020, 265: 120774. doi: 10.1016/j.conbuildmat.2020.120774
    [13]
    成浩, 王晅, 张家生, 等. 加筋粗粒土筋土界面剪切特性与统计损伤软化模型研究[J]. 铁道科学与工程学报, 2018, 15(11): 2780–2787. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201811008.htm

    CHENG Hao, WANG Xuan, ZHANG Jia-sheng, et al. Shear behavior of geogrid-soil interface and its statistical damage softening model[J]. Journal of Railway Science and Engineering, 2018, 15(11): 2780–2787. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201811008.htm
    [14]
    易富, 杜常博, 王政宇, 等. 网孔尺寸对格栅–尾矿界面特性的影响[J]. 煤炭学报, 2020, 45(5): 1795–1802. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005025.htm

    YI Fu, DU Chang-bo, WANG Zheng-yu, et al. Effects of mesh size on interface characteristics between geogrid and tailings[J]. Journal of China Coal Society, 2020, 45(5): 1795–1802. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005025.htm
    [15]
    LIU F Y, YING M J, YUAN G H, et al. Particle shape effects on the cyclic shear behaviour of the soil-geogrid interface[J]. Geotextiles and Geomembranes, 2021, 49(4): 991–1003. doi: 10.1016/j.geotexmem.2021.01.008
    [16]
    TAVAKOLI M G, MOTARJEMI F. Interfacial properties of geocell-reinforced granular soils[J]. Geotextiles and Geomembranes, 2018, 46(4): 384–395. doi: 10.1016/j.geotexmem.2018.03.002
    [17]
    李丽华, 文贝, 胡智, 等. 建筑垃圾填料与土工合成材料加筋剪切性能研究[J]. 武汉大学学报(工学版), 2019, 52(4): 311–316. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201904005.htm

    LI Li-hua, WEN Bei, HU Zhi, et al. Study on reinforced shear behavior of construction waste filler and geosynthetics[J]. Engineering Journal of Wuhan University, 2019, 52(4): 311–316. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201904005.htm
    [18]
    刘炜, 汪益敏, 陈页开, 等. 土工格室加筋土的大尺寸直剪试验研究[J]. 岩土力学, 2008, 29(11): 3133–3138, 3160. doi: 10.3969/j.issn.1000-7598.2008.11.044

    LIU Wei, WANG Yi-min, CHEN Ye-kai, et al. Research on large size direct shear test for geocell reinforced soil[J]. Rock and Soil Mechanics, 2008, 29(11): 3133–3138, 3160. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.11.044
    [19]
    陈静, 高睿, 刘洋泽鹏, 等. 不同脏污质对格栅加筋道砟性能的影响[J]. 西南交通大学学报, 2021.

    CHEN Jing, GAO Rui, LIU Yang-ze-peng, et al. Influence of Various Fouling Materials on Geogrid-reinforced Ballast[J]. Journal of Southwest Jiaotong University, 2021, 57(1): 200–206. (in Chinese)
    [20]
    刘飞禹, 朱晨, 王军. 剪切速率和法向加载频率对筋土界面剪切特性的影响[J]. 岩土工程学报, 2021, 43(5): 832–840. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202105009.htm

    LIU Fei-yu, ZHU Chen, WANG Jun. Influences of shear rate and loading frequency on shear behavior of geogrid-soil interfaces[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 832–840. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202105009.htm
    [21]
    HEGDE A, SITHARAM T G. Joint strength and wall deformation characteristics of a single-cell geocell subjected to uniaxial compression[J]. International Journal of Geomechanics, 2015, 15(5): 04014080. doi: 10.1061/(ASCE)GM.1943-5622.0000433
  • Related Articles

    [1]LIANG Xiaomin, GU Xiaoqiang, ZHAI Chongpu, WEI Deheng. Anisotropic wave velocities of granular materials and microscopic fabric using X-ray computed tomography[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1398-1407. DOI: 10.11779/CJGE20230425
    [2]ZHANG He-nian, CHEN Liang, LI Xiong-wei, XI Pei-sheng, MU Lin, HU Cai-yun. Ratio and mechanism of activated magnesium oxide carbonized raw earth block materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 233-236. DOI: 10.11779/CJGE2021S2055
    [3]YAO Jun-kai, YE Yang-sheng, WANG Peng-cheng, CHEN Feng, CAI De-gou. Subgrade heave of sulfate attacking on cement-stabilized filler[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 782-788. DOI: 10.11779/CJGE201904024
    [4]XU Xiao-li, GAO Feng, ZHANG Zhi-zhen, ZHANG Chuan-hu. Energy and structural effects of granite after high temperature[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 961-968. DOI: 10.11779/CJGE201405022
    [5]ZHOU Qiao-yong, XIONG Bao-lin, YANG Guang-qing, LIU Wei-chao. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 439-444.
    [6]YU Hui, DING Xuan-ming, KONG Gang-qiang, ZHENG Chang-jie. Comparative FEM analysis of deformation properties of expressway widening projects with cast-in-situ X-shaped concrete piles and circular pile[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 170-176.
    [7]WANG Cheng-hu, WANG Hong-cai, LIU Li-peng, SUN Dong-sheng, ZHAO Wei-hua. Effects of high temperatures on mechanical performance of basaltic tuff and mechanism analysis[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1827-1835.
    [8]Micro-experiments on a soft ground improved by cement-mixed soils with gypsum additive[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8).
    [9]Full scale model tests on vertical bearing characteristics of cast-in-place X-section piles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
    [10]WU Yanqing, CAO Guangzhu, DING Weihua. Permeability experiment of sandstone under variable seepage pressures by using X-ray CT real-time observation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 780-785.
  • Cited by

    Periodical cited type(4)

    1. 王大兵,黄郁东,韩振中,徐考,崔文海,周苏华. 基于贝叶斯逻辑回归模型的边坡稳定性预测. 市政技术. 2023(10): 173-180 .
    2. 曾锃,赵树祥,葛龙进,潘卫平,李敏,殷国峰. 罗闸河二级水电站拱坝右岸边坡变形破坏机制研究及治理后评估. 岩土工程学报. 2021(S1): 171-175 . 本站查看
    3. 夏增选,李萍,曹博,李同录,沈伟,康海伟. 边坡可靠度的Bayes估计及后验稳健性. 河海大学学报(自然科学版). 2020(03): 238-244 .
    4. 谢永利,刘新荣,晏长根,杨忠平,李家春,周志军,岳夏冰. 特殊岩土体工程边坡研究进展. 土木工程学报. 2020(09): 93-105 .

    Other cited types(18)

Catalog

    Article views (202) PDF downloads (147) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return