• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIANG Yong-hui, WANG Wei-dong, FENG Shi-jin, LIU Qing, WU Jiang-bin. Field study on treatment of collapsible silt for high-fill airport project[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1027-1035. DOI: 10.11779/CJGE202206006
Citation: LIANG Yong-hui, WANG Wei-dong, FENG Shi-jin, LIU Qing, WU Jiang-bin. Field study on treatment of collapsible silt for high-fill airport project[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1027-1035. DOI: 10.11779/CJGE202206006

Field study on treatment of collapsible silt for high-fill airport project

More Information
  • Received Date: May 12, 2021
  • Available Online: September 22, 2022
  • The performance of the natural foundation soils in the original project site is the key factor affecting the deformation and stability of the high-fill foundation in airports. There is a layer of silt stratum with ultra-low water content and strong collapsibility, embedded in the shallow layer of the construction site of the north extension project of Urumqi Airport in Xinjiang, China, which may cause unavoidable collapsible subsidence to the high-fill foundation. In order to evaluate the feasibility and the effect of using the dynamic compaction method to treat the collapsibility of silt soil in this area, the field experiments with two different compaction energies are carried out before large-area construction of the high-fill backfill. The tests on physical and mechanical properties, plate load tests, immersion load tests, standard penetration tests and multi-channel transient surface wave tests are conducted before and after the dynamic compaction. In addition, the vibration and lateral displacement of the soils around the test area are tested during the dynamic compaction. Based on the test results, the effect of eliminating the collapsibility of silt and its mechanism are discussed, and the influences on the adjacent ground by the dynamic compaction method are also evaluated. Simultaneously, some phenomena found during the tests and their probable causes are analyzed, and thus the corresponding engineering measures are proposed, which can be used as a reference for similar high-fill projects with ultro-low water content.
  • [1]
    民用机场岩土工程设计规范: MH/T 5027[S]. 2013.

    Code for Geotechnical Design of Civil Airports: MH/T 5027[S]. 2013. (in Chinese)
    [2]
    高填方地基技术规范: GB 51254—2017[S]. 2017.

    Technical Code for Deep Filled Ground: GB 51254—2017[S]. 2017. (in Chinese)
    [3]
    葛苗苗, 李宁, 张炜, 等. 黄土高填方沉降规律分析及工后沉降反演预测[J]. 岩石力学与工程学报, 2017, 36(3): 745–753. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703024.htm

    GE Miao-miao, LI Ning, ZHANG Wei, et al. Settlement behavior and inverse prediction of post-construction settlement of high filled loess embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 745–753. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703024.htm
    [4]
    杜伟飞, 郑建国, 刘争宏, 等. 黄土高填方地基沉降规律及排气条件影响[J]. 岩土力学, 2019, 40(1): 325–331. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901034.htm

    DU Wei-fei, ZHENG Jian-guo, LIU Zheng-hong, et al. Settlement behavior of high loess-filled foundation and impact from exhaust conditions[J]. Rock and Soil Mechanics, 2019, 40(1): 325–331. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901034.htm
    [5]
    侯森, 任庚, 韩黎明, 等. 承德机场高填方地基工后沉降预测[J]. 地下空间与工程学报, 2017, 13(增刊1): 279–284. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2017S1045.htm

    HOU Sen, REN Geng, HAN Li-ming, et al. Post-construction settlement prediction of the high embankment of Chengde Airport[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(S1): 279–284. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2017S1045.htm
    [6]
    臧亚君, 刘东燕, 蒋克锋, 等. 西南某机场高填方地基稳定性分析[J]. 地下空间与工程学报, 2007, 3(4): 711–715. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200704027.htm

    ZANG Ya-jun, LIU Dong-yan, JIANG Ke-feng, et al. Stability analysis on high embankment foundation of an airport in southwest China[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(4): 711–715. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200704027.htm
    [7]
    朱才辉, 李宁, 刘明振, 等. 吕梁机场黄土高填方地基工后沉降时空规律分析[J]. 岩土工程学报, 2013, 35(2): 293–301. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302015.htm

    ZHU Cai-hui, LI Ning, LIU Ming-zhen, et al. Spatiotemporal laws of post-construction settlement of loess-filled foundation of Lüliang Airport[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 293–301. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302015.htm
    [8]
    李保华, 郭伟林, 安明. 超高能级强夯处理低含水量湿陷性黄土原理研究[J]. 施工技术, 2015, 44(9): 112–114. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201509032.htm

    LI Bao-hua, GUO Wei-lin, AN Ming. Research on principle of ultra-high energy level dynamic compaction treating low water content collapsible loess[J]. Construction Technology, 2015, 44(9): 112–114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201509032.htm
    [9]
    LIN Z G, LI W M. Distribution and engineering properties of loess and loess-like soils in China[J]. Can Geotech J, 1982, 19(1): 76–91. doi: 10.1139/t82-007
    [10]
    朱彦鹏, 师占宾, 杨校辉. 强夯法处理山区机场高填方地基的试验[J]. 兰州理工大学学报, 2018, 44(5): 120–125. https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201805022.htm

    ZHU Yan-peng, SHI Zhan-bin, YANG Xiao-hui. Experiment on high-filled foundation treatment of airport in mountainy area with dynamic compaction method[J]. Journal of Lanzhou University of Technology, 2018, 44(5): 120–125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201805022.htm
    [11]
    左来. 强夯技术在湿陷性粉土地基处理中的应用[J]. 科技资讯, 2012, 10(17): 79. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXLJ201217063.htm

    ZUO Lai. Application of dynamic compaction technology in treatment of collapsible silt foundation[J]. Science & Technologu Information, 2012, 10(17): 79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZXLJ201217063.htm
    [12]
    大根义男. 实用土力学[M]. 卢友杰, 译. 北京: 机械工业出版社, 2012.

    DA Gen-yi-nan. Practical Soil Mechanics[M]. LU You-jie, trans. Beijing: Machinery Industry Press, 2012. (in Chinese)
    [13]
    孙进忠, 梁向前. 地基强夯加固质量安全监测理论与方法[M]. 北京: 化学工业出版社, 2013.

    SUN Jin-zhong, LIANG Xiang-qian. The Quality and Safety Monitoring Theory and Method for Dynamic Consolidation of Foundation[M]. Beijing: Chemical Industry Press, 2013. (in Chinese)
    [14]
    FENG S J, SHUI W H, GAO L Y, et al. Application of high energy dynamic compaction in coastal reclamation areas[J]. Marine Georesources & Geotechnology, 2010, 28(2): 130–142.
    [15]
    FENG S J, TAN K, SHUI W H, et al. Densification of desert sands by high energy dynamic compaction[J]. Engineering Geology, 2013, 157: 48–54.
  • Related Articles

    [1]LIANG Xiaomin, GU Xiaoqiang, ZHAI Chongpu, WEI Deheng. Anisotropic wave velocities of granular materials and microscopic fabric using X-ray computed tomography[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1398-1407. DOI: 10.11779/CJGE20230425
    [2]ZHANG He-nian, CHEN Liang, LI Xiong-wei, XI Pei-sheng, MU Lin, HU Cai-yun. Ratio and mechanism of activated magnesium oxide carbonized raw earth block materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 233-236. DOI: 10.11779/CJGE2021S2055
    [3]YAO Jun-kai, YE Yang-sheng, WANG Peng-cheng, CHEN Feng, CAI De-gou. Subgrade heave of sulfate attacking on cement-stabilized filler[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 782-788. DOI: 10.11779/CJGE201904024
    [4]XU Xiao-li, GAO Feng, ZHANG Zhi-zhen, ZHANG Chuan-hu. Energy and structural effects of granite after high temperature[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 961-968. DOI: 10.11779/CJGE201405022
    [5]ZHOU Qiao-yong, XIONG Bao-lin, YANG Guang-qing, LIU Wei-chao. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 439-444.
    [6]YU Hui, DING Xuan-ming, KONG Gang-qiang, ZHENG Chang-jie. Comparative FEM analysis of deformation properties of expressway widening projects with cast-in-situ X-shaped concrete piles and circular pile[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 170-176.
    [7]WANG Cheng-hu, WANG Hong-cai, LIU Li-peng, SUN Dong-sheng, ZHAO Wei-hua. Effects of high temperatures on mechanical performance of basaltic tuff and mechanism analysis[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1827-1835.
    [8]Micro-experiments on a soft ground improved by cement-mixed soils with gypsum additive[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8).
    [9]Full scale model tests on vertical bearing characteristics of cast-in-place X-section piles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
    [10]WU Yanqing, CAO Guangzhu, DING Weihua. Permeability experiment of sandstone under variable seepage pressures by using X-ray CT real-time observation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 780-785.
  • Cited by

    Periodical cited type(4)

    1. 王大兵,黄郁东,韩振中,徐考,崔文海,周苏华. 基于贝叶斯逻辑回归模型的边坡稳定性预测. 市政技术. 2023(10): 173-180 .
    2. 曾锃,赵树祥,葛龙进,潘卫平,李敏,殷国峰. 罗闸河二级水电站拱坝右岸边坡变形破坏机制研究及治理后评估. 岩土工程学报. 2021(S1): 171-175 . 本站查看
    3. 夏增选,李萍,曹博,李同录,沈伟,康海伟. 边坡可靠度的Bayes估计及后验稳健性. 河海大学学报(自然科学版). 2020(03): 238-244 .
    4. 谢永利,刘新荣,晏长根,杨忠平,李家春,周志军,岳夏冰. 特殊岩土体工程边坡研究进展. 土木工程学报. 2020(09): 93-105 .

    Other cited types(18)

Catalog

    Article views (209) PDF downloads (178) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return