Citation: | LIANG Yong-hui, WANG Wei-dong, FENG Shi-jin, LIU Qing, WU Jiang-bin. Field study on treatment of collapsible silt for high-fill airport project[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1027-1035. DOI: 10.11779/CJGE202206006 |
[1] |
民用机场岩土工程设计规范: MH/T 5027[S]. 2013.
Code for Geotechnical Design of Civil Airports: MH/T 5027[S]. 2013. (in Chinese)
|
[2] |
高填方地基技术规范: GB 51254—2017[S]. 2017.
Technical Code for Deep Filled Ground: GB 51254—2017[S]. 2017. (in Chinese)
|
[3] |
葛苗苗, 李宁, 张炜, 等. 黄土高填方沉降规律分析及工后沉降反演预测[J]. 岩石力学与工程学报, 2017, 36(3): 745–753. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703024.htm
GE Miao-miao, LI Ning, ZHANG Wei, et al. Settlement behavior and inverse prediction of post-construction settlement of high filled loess embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 745–753. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703024.htm
|
[4] |
杜伟飞, 郑建国, 刘争宏, 等. 黄土高填方地基沉降规律及排气条件影响[J]. 岩土力学, 2019, 40(1): 325–331. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901034.htm
DU Wei-fei, ZHENG Jian-guo, LIU Zheng-hong, et al. Settlement behavior of high loess-filled foundation and impact from exhaust conditions[J]. Rock and Soil Mechanics, 2019, 40(1): 325–331. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901034.htm
|
[5] |
侯森, 任庚, 韩黎明, 等. 承德机场高填方地基工后沉降预测[J]. 地下空间与工程学报, 2017, 13(增刊1): 279–284. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2017S1045.htm
HOU Sen, REN Geng, HAN Li-ming, et al. Post-construction settlement prediction of the high embankment of Chengde Airport[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(S1): 279–284. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2017S1045.htm
|
[6] |
臧亚君, 刘东燕, 蒋克锋, 等. 西南某机场高填方地基稳定性分析[J]. 地下空间与工程学报, 2007, 3(4): 711–715. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200704027.htm
ZANG Ya-jun, LIU Dong-yan, JIANG Ke-feng, et al. Stability analysis on high embankment foundation of an airport in southwest China[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(4): 711–715. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200704027.htm
|
[7] |
朱才辉, 李宁, 刘明振, 等. 吕梁机场黄土高填方地基工后沉降时空规律分析[J]. 岩土工程学报, 2013, 35(2): 293–301. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302015.htm
ZHU Cai-hui, LI Ning, LIU Ming-zhen, et al. Spatiotemporal laws of post-construction settlement of loess-filled foundation of Lüliang Airport[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 293–301. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302015.htm
|
[8] |
李保华, 郭伟林, 安明. 超高能级强夯处理低含水量湿陷性黄土原理研究[J]. 施工技术, 2015, 44(9): 112–114. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201509032.htm
LI Bao-hua, GUO Wei-lin, AN Ming. Research on principle of ultra-high energy level dynamic compaction treating low water content collapsible loess[J]. Construction Technology, 2015, 44(9): 112–114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201509032.htm
|
[9] |
LIN Z G, LI W M. Distribution and engineering properties of loess and loess-like soils in China[J]. Can Geotech J, 1982, 19(1): 76–91. doi: 10.1139/t82-007
|
[10] |
朱彦鹏, 师占宾, 杨校辉. 强夯法处理山区机场高填方地基的试验[J]. 兰州理工大学学报, 2018, 44(5): 120–125. https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201805022.htm
ZHU Yan-peng, SHI Zhan-bin, YANG Xiao-hui. Experiment on high-filled foundation treatment of airport in mountainy area with dynamic compaction method[J]. Journal of Lanzhou University of Technology, 2018, 44(5): 120–125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201805022.htm
|
[11] |
左来. 强夯技术在湿陷性粉土地基处理中的应用[J]. 科技资讯, 2012, 10(17): 79. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXLJ201217063.htm
ZUO Lai. Application of dynamic compaction technology in treatment of collapsible silt foundation[J]. Science & Technologu Information, 2012, 10(17): 79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZXLJ201217063.htm
|
[12] |
大根义男. 实用土力学[M]. 卢友杰, 译. 北京: 机械工业出版社, 2012.
DA Gen-yi-nan. Practical Soil Mechanics[M]. LU You-jie, trans. Beijing: Machinery Industry Press, 2012. (in Chinese)
|
[13] |
孙进忠, 梁向前. 地基强夯加固质量安全监测理论与方法[M]. 北京: 化学工业出版社, 2013.
SUN Jin-zhong, LIANG Xiang-qian. The Quality and Safety Monitoring Theory and Method for Dynamic Consolidation of Foundation[M]. Beijing: Chemical Industry Press, 2013. (in Chinese)
|
[14] |
FENG S J, SHUI W H, GAO L Y, et al. Application of high energy dynamic compaction in coastal reclamation areas[J]. Marine Georesources & Geotechnology, 2010, 28(2): 130–142.
|
[15] |
FENG S J, TAN K, SHUI W H, et al. Densification of desert sands by high energy dynamic compaction[J]. Engineering Geology, 2013, 157: 48–54.
|
[1] | LIANG Xiaomin, GU Xiaoqiang, ZHAI Chongpu, WEI Deheng. Anisotropic wave velocities of granular materials and microscopic fabric using X-ray computed tomography[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1398-1407. DOI: 10.11779/CJGE20230425 |
[2] | ZHANG He-nian, CHEN Liang, LI Xiong-wei, XI Pei-sheng, MU Lin, HU Cai-yun. Ratio and mechanism of activated magnesium oxide carbonized raw earth block materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 233-236. DOI: 10.11779/CJGE2021S2055 |
[3] | YAO Jun-kai, YE Yang-sheng, WANG Peng-cheng, CHEN Feng, CAI De-gou. Subgrade heave of sulfate attacking on cement-stabilized filler[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 782-788. DOI: 10.11779/CJGE201904024 |
[4] | XU Xiao-li, GAO Feng, ZHANG Zhi-zhen, ZHANG Chuan-hu. Energy and structural effects of granite after high temperature[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 961-968. DOI: 10.11779/CJGE201405022 |
[5] | ZHOU Qiao-yong, XIONG Bao-lin, YANG Guang-qing, LIU Wei-chao. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 439-444. |
[6] | YU Hui, DING Xuan-ming, KONG Gang-qiang, ZHENG Chang-jie. Comparative FEM analysis of deformation properties of expressway widening projects with cast-in-situ X-shaped concrete piles and circular pile[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 170-176. |
[7] | WANG Cheng-hu, WANG Hong-cai, LIU Li-peng, SUN Dong-sheng, ZHAO Wei-hua. Effects of high temperatures on mechanical performance of basaltic tuff and mechanism analysis[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1827-1835. |
[8] | Micro-experiments on a soft ground improved by cement-mixed soils with gypsum additive[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8). |
[9] | Full scale model tests on vertical bearing characteristics of cast-in-place X-section piles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6). |
[10] | WU Yanqing, CAO Guangzhu, DING Weihua. Permeability experiment of sandstone under variable seepage pressures by using X-ray CT real-time observation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 780-785. |
1. |
王大兵,黄郁东,韩振中,徐考,崔文海,周苏华. 基于贝叶斯逻辑回归模型的边坡稳定性预测. 市政技术. 2023(10): 173-180 .
![]() | |
2. |
曾锃,赵树祥,葛龙进,潘卫平,李敏,殷国峰. 罗闸河二级水电站拱坝右岸边坡变形破坏机制研究及治理后评估. 岩土工程学报. 2021(S1): 171-175 .
![]() | |
3. |
夏增选,李萍,曹博,李同录,沈伟,康海伟. 边坡可靠度的Bayes估计及后验稳健性. 河海大学学报(自然科学版). 2020(03): 238-244 .
![]() | |
4. |
谢永利,刘新荣,晏长根,杨忠平,李家春,周志军,岳夏冰. 特殊岩土体工程边坡研究进展. 土木工程学报. 2020(09): 93-105 .
![]() |