• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SUN Rui, YUAN Xiao-ming. Holistic equivalent linearization approach for seismic response analysis of soil layers[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 603-612. DOI: 10.11779/CJGE202104002
Citation: SUN Rui, YUAN Xiao-ming. Holistic equivalent linearization approach for seismic response analysis of soil layers[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 603-612. DOI: 10.11779/CJGE202104002

Holistic equivalent linearization approach for seismic response analysis of soil layers

More Information
  • Received Date: December 12, 2019
  • Available Online: December 04, 2022
  • The limitations of the traditional equivalent linearization approaches are investigated. The concept and algorithm of the holistic equivalent shear strain are proposed, and a new program for calculating seismic response of the equivalent linearized soil is compiled. The research indicates that the traditional approaches for the equivalent shear strain with 0.65 times the maximum shear strain are not suitable for simulating the shear stain of soil layers in strong nonlinear cases. Based on the holistic optimization, the participation and completeness of the holistic equivalent shear strain are constructed. The participation is determined by the effective shear strain threshold. All shear strain waves whose peak values exceed the threshold value are used to participate in the calculation to ensure the integrity of shear strain information, and the zero-crossing method is used to ensure that there is a unique relationship between the effective equivalent shear strain and the shear strain time history. By taking 1963 sets of records in the four types of sites with surface PGA from 0.04g to 1.21g in KiK-net underground arrays as samples to compare the new method with the other existing methods, the results show that the proposed concepts and formulas are correct and reasonable, and they can solve the problem of simulating strong nonlinear seismic amplification.
  • [1]
    廖振鹏. 地震小区划(理论与实践)[M]. 北京: 地震出版社, 1989.

    LIAO Zhen-peng. Seismic Microzonation (Theory and Practice)[M]. Beijing: Seismological Press, 1989. (in Chinese)
    [2]
    徐扬, 赵晋泉, 李小军, 等. 基于汶川地震远场强震动记录的厚覆盖土层对长周期地震动影响分析[J]. 震灾防御技术, 2008, 3(4): 345-351. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY200804004.htm

    XU Yang, ZHAO Jin-quan, LI Xiao-jun, et al. Study on effect of thick sedimentary layers on long-period ground motion from far-field strong motion records of Wenchuan earthquake[J]. Technology for Earthquake Disaster Prevention, 2008, 3(4): 345-351. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY200804004.htm
    [3]
    王海云, 谢礼立. 自贡市西山公园地形对地震动的影响[J]. 地球物理学报, 2010, 53(7): 1631-1638. doi: 10.3969/j.issn.0001-5733.2010.07.014

    WANG Hai-yun, XIE Li-li. Effects of topography on ground motion in the Xishan Park, Zigong city[J]. Chinese Journal of Geophysics, 2010, 53(7): 1631-1638. (in Chinese) doi: 10.3969/j.issn.0001-5733.2010.07.014
    [4]
    吴志坚, 王兰民, 陈拓, 等. 汶川地震远场黄土场地地震动场地放大效应机制研究[J]. 岩土力学, 2012, 33(12): 3736-3740. doi: 10.16285/j.rsm.2012.12.021

    WU Zhi-jian, WANG Lan-min, CHEN Tuo, et al. Study of mechanism of site amplification effects on ground motion in far field loess during Wenchuan Ms8.0 earthquake[J]. Rock and Soil Mechanics, 2012, 33(12): 3736-3740. (in Chinese) doi: 10.16285/j.rsm.2012.12.021
    [5]
    GRIFFITHS S C, COX B R, RATHJE E M. Challenges associated with site response analyses for soft soils subjected to high-intensity input ground motions[J]. Soil Dynamics and Earthquake Engineering, 2016, 85: 1-10. doi: 10.1016/j.soildyn.2016.03.008
    [6]
    李晓飞, 孙锐, 袁晓铭. 现有等效线性化分析程序在实际软场地计算结果方面的比较[J]. 自然灾害学报, 2015, 24(4): 56-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201504007.htm

    LI Xiao-fei, SUN Rui, YUAN Xiao-ming. The Comparison of existing equivalent linear response analysis program for actual soft site in KiK-net Array[J]. Journal of Natural Disaster, 2015, 24(4): 56-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201504007.htm
    [7]
    SCHNABEL P B, LYSMER J, SEED H B. SHAKE: A computer program for earthquake response analysis of horizontally layered sites[R]. Berkeley: University of California, Earthquake Engineering Research Center, 1972.
    [8]
    SHAKE2000 User's Manual[M]. Washington: GeoMotions, LLC, 2011.
    [9]
    李晓飞, 孙锐, 于啸波, 等. 实际硬场地下现有等效线性化分析程序的对比[J]. 地震工程与工程振动, 2014, 34(1): 947-954. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC2014S1150.htm

    LI Xiao-fei, SUN Rui, YU Xiao-bo, et al. The comparison of existing equivalent linear analysis program under actual stiff site based on KiK-net Array[J]. Earthquake Engineering and Engineering Vibration, 2014, 34(1): 947-954. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC2014S1150.htm
    [10]
    李瑞山, 袁晓铭, 李程程. 中硬场地下两种土层地震反应方法与精确解的对比[J]. 地震工程学报, 2015, 37(2): 40-46. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201502048.htm

    LI Rui-shan, YUAN Xiao-ming, LI Cheng-cheng. A comparison between different seismic response analysis methods and exact solution for medium hard soil sites[J]. Journal of Earthquake Engineering, 2015, 37(2): 40-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201502048.htm
    [11]
    王鸾, 袁近远, 汪云龙, 等. 基于软土场地实测记录的三种土层地震反应分析方法可靠性研究[J]. 自然灾害学报, 2018, 27(5): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201805002.htm

    WANG Luan, YUAN Jin-yuan, WANG Yun-long, et al. Reliability comparison of three kinds of seismic response analysis methods for soil layers in soft soil site[J]. Journal of Natural Disasters, 2018, 27(5): 12-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201805002.htm
    [12]
    李兆焱, 袁晓铭, 王鸾, 等. 巨厚场地三种土层地震反应分析程序对比检验[J]. 地震工程与工程振动, 2017, 37(4): 42-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201704005.htm

    LI Zhao-yan, YUAN Xiao-ming, WANG Luan, et al. Verification of three methods for calculating earthquake response of soil layers in deep sites[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(4): 42-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201704005.htm
    [13]
    杨洋, 孙锐, 杨洪搏. 国际上两种典型土层地震反应分析程序对比研究[J]. 世界地震工程, 2017, 33(3): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201703003.htm

    YANG Yang, SUN Rui, YANG Hong-bo. Contrasting study between two international typical soil layers seismic response analysis programs[J]. World Earthquake Engineering, 2017, 33(3): 17-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201703003.htm
    [14]
    李瑞山, 袁晓铭, 李程程. 基于黏弹性解的土层地震反应分析程序LSSRLI-1和SHAKE2000的对比[J]. 地震工程与工程振动, 2015, 35(3): 17-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201503003.htm

    LI Rui-shan, YUAN Xiao-ming, LI Cheng-cheng. Visco-elastic solution based comparison between the ground response analysis programs LSSRLI-1 and SHAKE2000[J]. Earthquake Engineering and Engineering Vibration, 2015, 35(3): 17-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201503003.htm
    [15]
    ZALACHORIS G, RATHJE E M. Evaluation of one-dimensional site response techniques using borehole arrays[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2015, 141(12): 53-65.
    [16]
    GRIFFITHS S C, COX B R, RATHJE E M. Challenges associated with site response analyses for soft soils subjected to high-intensity input ground motions[J]. Soil Dynamics and Earthquake Engineering, 2016, 85: 1-10.
    [17]
    RATHJE E M, KOTTKE A R, TRENT W L. Influence of input motion and site property variabilities on seismic site response analysis[J]. J Geotech Geoenv Eng, ASCE, 2010, 136: 607-619.
    [18]
    KAKLAMANOS J, BRADLEY B A, THOMPSON E M, et al. Critical parameters affecting bias sand variability ins ite-response analyses using KiK-net downhole array data[J]. Bull Seism Soc Am, 2013, 103(3): 1733-1749.
    [19]
    袁晓铭, 李瑞山, 孙锐. 新一代土层地震反应分析方法[J]. 土木工程学报, 2016, 49(10): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201610015.htm

    YUAN Xiao-ming, LI Rui-shan, SUN Rui. A new generation method for earthquake response analysis of soil layers[J]. China Civil Engineering Journal, 2016, 49(10): 95-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201610015.htm
    [20]
    YOSHIDA N, KOBAYASHI S, SUETOMI I, et al. Equivalent linear method considering frequency dependent characteristics of stiffness and damping[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(3): 205-222.
    [21]
    ASSINMAKI D, KAUSEL E. An equivalent linear algorithm with frequency and pressure-dependent moduli and damping for the seismic analysis of deep sites[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9/10/11/12): 959-965.
    [22]
    蒋通, 邢海灵. 水平土层地震反应分析考虑频率相关性的等效线性化方法[J]. 岩土工程学报, 2007, 29(2): 218-224. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200702012.htm

    JIANG Tong, XING Hai-ling. An equivalent linear method considering frequency-dependent soil properties for seismic response analysis[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 218-224. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200702012.htm
    [23]
    National Research Znstitute for Earth Science and Disaster Resilience(NIED) Strong-Motion Seismograph Networks (K-NET,Kik-net)[OL].http://www.Kyoshin.bosai.go.jp
    [24]
    建筑抗震设计规范:GB 50011—2010[S]. 2010.

    Code for Seismic Design of Buildings: GB 50011—2010[S]. 2010. (in Chinese)
    [25]
    DARENDELI M B. Development of A New Family of Normalized Modulus Reduction and Material Damping Curves[D]. Austin: The University of Texas at Austin, 2001.
    [26]
    中国地震动参数区划图:GB 18306—2015[S]. 2015.

    Seismic Ground Motion Parameters Zonation Map of China: GB18306—2015[S]. 2015. (in Chinese)
  • Related Articles

    [1]JIANG Lusha, PU Hefu, MIN Ming, QIU Jinwei, CHEN Xiaoxiong. Sorption properties of polymer-modified bentonite to Pb(Ⅱ) ions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 54-59. DOI: 10.11779/CJGE2024S20018
    [2]ZHANG Wen-jie, JIANG Feng-yong. Experimental study on effect of dissolved organic matter on mobility of soil colloids[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2013-2019. DOI: 10.11779/CJGE202111007
    [3]XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
    [4]HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
    [5]HE Shun-hui, XIE Shi-ping, ZHANG Jiang. Adsorption and isolation of GCL on copper ions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 79-82. DOI: 10.11779/CJGE2016S1014
    [6]LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895.
    [7]LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648.
    [8]Experimental study on reducing thickness of adsorbed water layer for red clay particles treated by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
    [9]NING Jianguo, HUANG Xin, XU Sheng. Effect of pH value of soil on strength increasing of the stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 98-102.
    [10]Zhang Huiming, Zeng Qiaoling. Steady state strength of sand:concepts and experiment[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 95-100.
  • Cited by

    Periodical cited type(8)

    1. 陈星,黄涛,彭道平,赵锐,刘运. 赤泥渗滤液对GCL多尺度孔隙结构及防渗性能影响. 安全与环境学报. 2024(01): 290-301 .
    2. 冯斌,徐滨. GCL膨润土衬垫膨胀量对渗透性能的影响. 新型建筑材料. 2024(03): 121-124 .
    3. 李天义,孙德安,傅贤雷,陈征,汪磊,杜延军. 考虑时变污染源与土工膜破损的污染物二维迁移特性. 岩土工程学报. 2024(11): 2450-2456 . 本站查看
    4. 林海,时花豹,周创兵,吕志涛. 黏土-膨润土混合土衬里的渗透特性试验研究. 材料导报. 2024(23): 96-101 .
    5. 刘志彬,王宇婷,罗婷倚,唐亚森,谢世平. GCL用于路基水分场调控可行性及铺设位置优化分析. 重庆交通大学学报(自然科学版). 2023(12): 53-60 .
    6. 王亮,杨华展,吴舒畅,罗昊进,汤泽和,于俊赞,丁昊,朱世俊. 市政污水管道渗漏污染物迁移数学解析模型. 给水排水. 2022(09): 117-123 .
    7. 倪佳琪,詹良通,冯嵩,孔令刚,丰田. 压实钢渣-膨润土覆盖防渗材料试验研究. 浙江大学学报(工学版). 2022(12): 2478-2486 .
    8. 康祺祯,李静静,李育超,姚士元,陈云敏. PAA-Na改性膨润土在酸碱盐溶液中的渗透性. 浙江大学学报(工学版). 2021(10): 1877-1884+1921 .

    Other cited types(1)

Catalog

    Article views (350) PDF downloads (163) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return