• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Sheng-qi, TIAN Wen-ling, DONG Jing-peng. Experimental study on failure mechanical properties of granite with two grain sizes after thermal treatment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 281-289. DOI: 10.11779/CJGE202102008
Citation: YANG Sheng-qi, TIAN Wen-ling, DONG Jing-peng. Experimental study on failure mechanical properties of granite with two grain sizes after thermal treatment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 281-289. DOI: 10.11779/CJGE202102008

Experimental study on failure mechanical properties of granite with two grain sizes after thermal treatment

More Information
  • Received Date: May 05, 2020
  • Available Online: December 04, 2022
  • The grain size has a significant effect on the mechanical behaviors of the thermally treated granite and further affects the safe and stable operation of high level nuclear waste (HLW) repository. Therefore, the granite with two kinds of grain sizes under Brazilian splitting and triaxial compression is adopted to investigate the variation of physical and mechanical parameters with confining pressure and temperature. The results indicate that there are more flaws in the coarse-grained granite than in the fine-grained granite, which results in the less strength and elastic modulus in the coarse-grained granite than those in the fine-grained granite, and the strength and elastic modulus in the coarse-grained granite are more sensitive to the temperature. After the peak strength, the coarse-grained specimens show ductile failure under high confining pressure, and the residual strength increases with the temperature. However, the fine-grained specimens show brittle failure under high confining pressure. On the one hand, micro-cracks are induced by high temperature, which results in the reduction of cohesion among grains. On the other hand, high temperature increases the friction among grains. Therefore, the strength first increases and then decreases with the temperature. The confining pressure can restrain the radial strain and decrease the Poisson’s ratio, and partial flaw closure due to the action of confining pressure results in the decrease of the potential of the specimens to adjust when the applied axial compression decreases, which increases the Poisson’s ratio. Therefore, the Poisson’s ratio of thermally treated granite specimens shows different trends with the confining pressure.
  • [1]
    ALM O, JAKTLUND L L, SHAOQUAN K. The influence of microcrack density on the elastic and fracture mechanical properties of Stripa granite[J]. Physics of the Earth & Planetary Interiors, 1985, 40(3): 161-179.
    [2]
    XU X L, GAO F, SHEN X M, et al. Mechanical characteristics and microcosmic mechanisms of granite under temperature loads[J]. Journal of China University of Mining and Technology, 2008, 18(3): 413-417. doi: 10.1016/S1006-1266(08)60086-3
    [3]
    XU X L, KANG Z X, JI M, et al. Research of microcosmic mechanism of brittle-plastic transition for granite under high temperature[J]. Procedia Earth & Planetary Science, 2009, 1(1): 432-437.
    [4]
    SHAO S, WASANTHA P L P, RANJITH P G, et al. Effect of cooling rate on the mechanical behavior of heated Strathbogie granite with different grain sizes[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 381-387. doi: 10.1016/j.ijrmms.2014.04.003
    [5]
    SHAO S, RANJITH P G, WASANTHA P L P, et al. Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: an application to geothermal energy[J]. Geothermics, 2015, 54: 96-108. doi: 10.1016/j.geothermics.2014.11.005
    [6]
    万志军, 赵阳升, 董付科, 等. 高温及三轴应力下花岗岩体力学特性的实验研究[J]. 岩石力学与工程学报, 2008(1): 72-77. doi: 10.3321/j.issn:1000-6915.2008.01.011

    WAN Zhi-jun, ZHAO Yang-sheng, DONG Fu-ke, et al. Experimental study on mechanical characteristics of granite under high temperatures and triaxial stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2008(1): 72-77. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.01.011
    [7]
    武晋文, 赵阳升, 万志军, 等. 中高温三轴应力下鲁灰花岗岩热破裂声发射特征的试验研究[J]. 岩土力学, 2009, 30(11): 3331-3336. doi: 10.3969/j.issn.1000-7598.2009.11.019

    WU Jin-wen, ZHAO Yang-sheng, WAN Zhi-jun, et al. Experimental study of acoustic emission characteristics of granite thermal cracking under middle-high temperature and triaxial stress[J]. Rock and Soil Mechanics, 2009, 30(11): 3331-3336. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.11.019
    [8]
    徐小丽, 高峰, 张志镇, 等. 高温后花岗岩能量及结构效应研究[J]. 岩土工程学报, 2014, 36(5): 961-968. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405029.htm

    XU Xiao-li, GAO Feng, ZHANG Zhi-zhen, et al. Energy and structural effects of granite after high temperature[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 961-968. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405029.htm
    [9]
    徐小丽, 高峰, 张志镇. 高温作用后花岗岩三轴压缩试验研究[J]. 岩土力学, 2014, 35(11): 3177-3183. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201411021.htm

    XU Xiao-li, GAO Feng, ZHANG Zhi-zhen. Research on triaxial compression test of granite after high temperatures[J]. Rock and Soil Mechanics, 2014, 35(11): 3177-3183. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201411021.htm
    [10]
    KUMARI W G P, RANJITH P G, PERERA M S A, et al. Mechanical behaviour of Australian Strathbogie granite under in-situ stress and temperature conditions: An application to geothermal energy extraction[J]. Geothermics, 2017, 65: 44-59. doi: 10.1016/j.geothermics.2016.07.002
    [11]
    赵阳升, 郤保平, 万志军, 等. 高温高压下花岗岩中钻孔变形失稳临界条件研究[J]. 岩石力学与工程学报, 2009, 28(5): 865-874. doi: 10.3321/j.issn:1000-6915.2009.05.001

    ZHAO Yang-sheng, XI Bao-ping, WAN Zhi-jun, et al. Study of critical condition of borehole instability in granite under high temperature and high pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 865-874. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.05.001
    [12]
    郤保平, 赵阳升. 600°C内高温状态花岗岩遇水冷却后力学特性试验研究[J]. 岩石力学与工程学报, 2010, 29(5): 892-898. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005007.htm

    XI Bao-ping, ZHAO Yang-sheng. Experimental research on mechanical properties of water-cooled granite under high temperatures within 600 °C[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 892-898. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005007.htm
    [13]
    WANG Z, HE A, SHI G, et al. Temperature effect on AE energy characteristics and damage mechanical behaviors of granite[J]. International Journal of Geomechanics, 2017, 18(3): 04017163.
    [14]
    YANG S Q, RANJITH P G, JING H W, et al. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments[J]. Geothermics, 2017, 65: 180-197. doi: 10.1016/j.geothermics.2016.09.008
    [15]
    田文岭. 高温处理后花岗岩力学行为与损伤破裂机理研究[D]. 徐州: 中国矿业大学, 2019.

    TIAN Wen-ling. Study on the Mechanical Behavior and Damage Mechanism of Granite After High Temperature Treatment[D]. Xuzhou: China University of Mining and Technology, 2019. (in Chinese)
    [16]
    MITCHELL E K, FIALKO Y, BROWN K M. Temperature dependence of frictional healing of Westerly granite: Experimental observations and numerical simulations[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(3): 567-582. doi: 10.1029/2012GC004241
    [17]
    TANG Z C, ZHANG Q Z, PENG J. Effect of thermal treatment on the basic friction angle of rock joint[J]. Rock Mechanics & Rock Engineering, doi: 10.1007/s00603-019-02026-w.
    [18]
    CHEN Y L, WANG S R, NI J, et al. An experimental study of the mechanical properties of granite after high temperature exposure based on mineral characteristics[J]. Engineering Geology, 2017, 220: 234-242. doi: 10.1016/j.enggeo.2017.02.010
    [19]
    GLOVER P W J, BAUD P, DAROT M, et al. α/β phase transition in quartz monitored using acoustic emissions[J]. Geophysical Journal International, 1995, 120: 775-782. doi: 10.1111/j.1365-246X.1995.tb01852.x
    [20]
    YANG S Q, TIAN W L, DEREK E, et al. An experimental study of effect of high temperature on the permeability evolution and failure response of granite under triaxial compression[J]. Rock Mechanics and Rock Engineering, 2020, 53: 4403-4427.
  • Cited by

    Periodical cited type(25)

    1. 李明昊,李皋,张毅,杨旭,李红涛,冯佳歆,宿腾跃. 位移约束和温度耦合下致密砂岩热诱导微裂纹发育规律研究. 岩石力学与工程学报. 2025(01): 174-184 .
    2. 黄彦华,张坤博,杨圣奇,田文岭,朱振南,印昊,李明旭. 高温后花岗岩微观特征及其对强度影响规律研究. 岩石力学与工程学报. 2025(02): 359-372 .
    3. 李明耀,李绍金,彭磊,丁宇飞,左建平. 基于相场法的花岗岩弹塑性损伤模型及其细观力学行为研究. 岩石力学与工程学报. 2024(03): 611-622 .
    4. 黄彦华,陶然,韩媛媛,陈笑,罗一鸣,武世岩. 温度对不同孔隙砂岩Ⅰ型断裂韧度影响的试验研究. 采矿与安全工程学报. 2024(02): 430-436 .
    5. 于洪丹,卢琛,陈卫忠,黄嘉玮,李洪辉. 塔木素黏土岩蠕变特性试验与理论研究. 岩石力学与工程学报. 2024(S1): 3578-3585 .
    6. 杨文东,王柄淇,姚军,井文君,张祥. 三轴压缩下实时高温和热处理后碳酸盐岩力学特性的试验研究. 岩石力学与工程学报. 2024(06): 1347-1358 .
    7. 闫程锦,郤保平. 基于颗粒流GBM模型的花岗岩热力损伤特性研究. 水利水电技术(中英文). 2024(05): 170-180 .
    8. 赵奎,李从明,曾鹏,熊良锋,龚囱,黄震. 持续高温作用下花岗岩特征应力及声发射特征试验研究. 岩石力学与工程学报. 2024(07): 1580-1592 .
    9. 贾蓬,钱一锦,毛松泽,徐雪桐,卢佳亮. 晶粒尺寸对花岗岩动态劈裂力学特性及断面粗糙度影响的试验研究. 应用基础与工程科学学报. 2024(05): 1449-1462 .
    10. 夏开宗,刘夏临,林英书,张飞,司志伟,孙朝燚. 基于岩体波速的地下洞室围岩损伤区岩体力学参数取值方法及工程应用. 岩石力学与工程学报. 2024(10): 2414-2429 .
    11. 黄麟淇,刘茂林,王钊炜,郭懿德,司雪峰,李夕兵,李超. 温度影响和真三轴加载下深部圆形隧洞破坏研究(英文). Journal of Central South University. 2024(09): 3119-3141 .
    12. 赵奎,李从明,曾鹏,熊良锋,龚囱,黄震. 热损伤花岗岩能量演化机制及损伤本构模型. 金属矿山. 2024(11): 45-54 .
    13. 黄彦华,陶然,陈笑,罗一鸣,韩媛媛. 高温后花岗岩断裂特性及热裂纹演化规律研究. 岩土工程学报. 2023(04): 739-747 . 本站查看
    14. 张涛,蔚立元,苏海健,高亚楠,贺虎,魏江波. 基于多级力链网络分析的花岗岩压缩特性的矿物尺寸效应研究. 岩石力学与工程学报. 2023(08): 1988-2003 .
    15. 李卫,苏海健,蔚立元,刘日成,陈广印. 高温热处理砂岩Ⅰ-Ⅲ混合断裂特性试验研究. 采矿与安全工程学报. 2023(06): 1281-1289 .
    16. 顾冬,马力,罗坤,孙云儒. 水利枢纽工程场地基岩高温三轴压缩渗透力学试验研究. 水利科技与经济. 2022(02): 74-78 .
    17. 张涛,蔚立元,鞠明和,李明,苏海健,季浩奇. 基于PFC3D-GBM的晶体–单元体尺寸比对花岗岩动态拉伸特性影响分析. 岩石力学与工程学报. 2022(03): 468-478 .
    18. 李博宇,彭文祥,王李昌,隆威. 温度与化学作用下岩石物理力学性质研究进展. 地质装备. 2022(02): 33-37 .
    19. 刘磊,李睿,秦浩,刘洋. 高温后深部矽卡岩动力学特性及微观破坏机制研究. 岩土工程学报. 2022(06): 1166-1174 . 本站查看
    20. 詹懿德,汪发祥,佘恬钰,沈佳轶,吕庆. 考虑围压效应的块状节理岩体变形破坏数值模拟. 水利水运工程学报. 2022(04): 70-76 .
    21. 李明耀,彭磊,左建平,王智敏,李绍金,薛喜仁. 基于DIP-FFT数值方法的花岗岩多尺度力学特性研究. 岩石力学与工程学报. 2022(11): 2254-2267 .
    22. 王春,熊宏威,舒荣华,薛文越,胡慢谷,张攀龙,雷彬彬. 高温处理后含铜矽卡岩的动态力学特性及损伤破碎特征. 中国有色金属学报. 2022(09): 2801-2818 .
    23. 梁忠豪,秦楠,孙嘉彬,葛强. 高温作用后黄砂岩三轴压缩及细观破裂机制. 科学技术与工程. 2021(24): 10430-10439 .
    24. 郝宪杰,刘继山,魏英楠,陈泽宇,靳多祥,潘光耀,张谦. 2000m超深煤系储层力学及声发射特征的围压效应. 中南大学学报(自然科学版). 2021(08): 2611-2621 .
    25. 徐文龙,徐鼎平,柳秀洋. 高温热损伤对花岗岩单轴破坏模式和强度的影响研究. 皖西学院学报. 2021(05): 94-99 .

    Other cited types(28)

Catalog

    Article views (316) PDF downloads (148) Cited by(53)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return