• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUANG Yanhua, TAO Ran, CHEN Xiao, LUO Yiming, HAN Yuanyuan. Fracture behavior and thermal cracking evolution law of granite specimens after high-temperature treatment[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 739-747. DOI: 10.11779/CJGE20220125
Citation: HUANG Yanhua, TAO Ran, CHEN Xiao, LUO Yiming, HAN Yuanyuan. Fracture behavior and thermal cracking evolution law of granite specimens after high-temperature treatment[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 739-747. DOI: 10.11779/CJGE20220125

Fracture behavior and thermal cracking evolution law of granite specimens after high-temperature treatment

More Information
  • Received Date: February 07, 2022
  • Available Online: April 16, 2023
  • During the exploitation of deep geothermal energy, the thermal rocks will cool with different cooling rates. A comprehensive understanding of mechanical behavior of the thermal-treated rock is very important for deep underground engineering. However, the fracture behavior and influence mechanism of thermal granite specimens under different cooling ways are unclear at present. Therefore, in this study, the three-point bedding tests are carried out on the semicircular bend granite specimens after high-temperature treatment. The load-displacement curves, fracture toughnesses and failure patterns of the post-heated granite specimens are analyzed, and the evolution laws of micro-cracks and mineral components are discussed. The experimental results show that: (1) As the temperature increases, the fracture toughness of the granite specimens decreases. The fracture toughness of the specimens after quenching in water is lower than that after cooling down naturally in the furnace. (2) The crack initiated from the tip of notch propagates toward the loading point and splits the specimen into two parts. As the temperature increases, the tortuosity degree and deviation of fracture trace of the semicircular bend granite specimens increase. (3) The mineral components of granite are not significantly changed after high-temperature treatment. The micro-crack rate identified by the image processing increases with the increase of high temperature, and that of the specimen after quenching in water is higher than that after cooling down naturally in the furnace, which indicates that the deterioration of micro-structure of rock induced by high-temperature treatment reduces the fracture toughness of granite.
  • [1]
    庞忠和, 罗霁, 程远志, 等. 中国深层地热能开采的地质条件评价[J]. 地学前缘, 2020, 27(1): 134-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001018.htm

    PANG Zhonghe, LUO Ji, CHENG Yuanzhi, et al. Evaluation of geological conditions for the development of deep geothermal energy in China[J]. Earth Science Frontiers, 2020, 27(1): 134-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001018.htm
    [2]
    亢方超, 唐春安. 基于开挖的增强型地热系统概述[J]. 地学前缘, 2020, 27(1): 185-193. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001023.htm

    KANG Fangchao, TANG Chun'an. Overview of enhanced geothermal system (EGS) based on excavation in China[J]. Earth Science Frontiers, 2020, 27(1): 185-193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001023.htm
    [3]
    张洪伟, 万志军, 周长冰, 等. 干热岩高温力学特性及热冲击效应分析[J]. 采矿与安全工程学报, 2021, 38(1): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202101016.htm

    ZHANG Hongwei, WAN Zhijun, ZHOU Changbing, et al. High temperature mechanical properties and thermal shock effect of hot dry rock[J]. Journal of Mining & Safety Engineering, 2021, 38(1): 138-145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202101016.htm
    [4]
    贾蓬, 杨其要, 刘冬桥, 等. 高温花岗岩水冷却后物理力学特性及微观破裂特征[J]. 岩土力学, 2021, 42(6): 1568-1578. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106011.htm

    JIA Peng, YANG Qiyao, LIU Dongqiao, et al. Physical and mechanical properties and related microscopic characteristics of high-temperature granite after water-cooling[J]. Rock and Soil Mechanics, 2021, 42(6): 1568-1578. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106011.htm
    [5]
    朱振南, 田红, 董楠楠, 等. 高温花岗岩遇水冷却后物理力学特性试验研究[J]. 岩土力学, 2018, 39(增刊2): 169-176. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2025.htm

    ZHU Zhennan, TIAN Hong, DONG Nannan, et al. Experimental study of physico-mechanical properties of heat-treated granite by water cooling[J]. Rock and Soil Mechanics, 2018, 39(S2): 169-176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2025.htm
    [6]
    郤保平, 吴阳春, 赵阳升, 等. 不同冷却模式下花岗岩强度对比与热破坏能力表征试验研究[J]. 岩石力学与工程学报, 2020, 39(2): 286-300. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002009.htm

    XI Baoping, WU Yangchun, ZHAO Yangsheng, et al. Experimental investigations of compressive strength and thermal damage capacity characterization of granite under different cooling modes[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 286-300. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002009.htm
    [7]
    邓龙传, 李晓昭, 吴云, 等. 不同冷却方式对花岗岩力学损伤特征影响[J]. 煤炭学报, 2021, 46(增刊1): 187-199. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2021S1018.htm

    DENG Longchuan, LI Xiaozhao, WU Yun, et al. Mechanical damage characteristics of granite with different cooling methods[J]. Journal of China Coal Society, 2021, 46(S1): 187-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2021S1018.htm
    [8]
    朱要亮, 俞缙, 高海东, 等. 水冷却对高温花岗岩的细观损伤及动力学性能影响[J]. 爆炸与冲击, 2019, 39(8): 84-95. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201908007.htm

    ZHU Yaoliang, YU Jin, GAO Haidong, et al. Effect of water cooling on microscopic damage and dynamic properties of high-temperature granite[J]. Explosion and Shock Waves, 2019, 39(8): 84-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201908007.htm
    [9]
    吴星辉, 蔡美峰, 任奋华, 等. 不同热处理作用下花岗岩纵波波速和导热能力的演化规律分析[J]. 岩石力学与工程学报, 2022, 41(3): 457-467. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202203003.htm

    WU Xinghui, CAI Meifeng, REN Fenhua, et al. P-wave evolution and thermal conductivity characteristics in granite under different thermal treatment[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(3): 457-467. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202203003.htm
    [10]
    崔翰博, 唐巨鹏, 姜昕彤. 自然冷却和遇水冷却后高温花岗岩力-声特性试验研究[J]. 固体力学学报, 2019, 40(6): 571-582. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201906005.htm

    CUI Hanbo, TANG Jupeng, JIANG Xintong. Experimental study on mechanical and acoustic characteristics of high-temperature granite after natural cooling and water cooling[J]. Chinese Journal of Solid Mechanics, 2019, 40(6): 571-582. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201906005.htm
    [11]
    金爱兵, 王树亮, 魏余栋, 等. 不同冷却条件对高温砂岩物理力学性质的影响[J]. 岩土力学, 2020, 41(11): 3531-3539, 3603.

    JIN Aibing, WANG Shuliang, WEI Yudong, et al. Effect of different cooling conditions on physical and mechanical properties of high-temperature sandstone[J]. Rock and Soil Mechanics, 2020, 41(11): 3531-3539, 3603. (in Chinese)
    [12]
    FUNATSU T, KURUPPU M, MATSUI K. Effects of temperature and confining pressure on mixed-mode (Ⅰ-Ⅱ) and mode Ⅱ fracture toughness of Kimachi sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 1-8.
    [13]
    李春, 胡耀青, 张纯旺, 等. 不同温度循环冷却作用后花岗岩巴西劈裂特征及其物理力学特性演化规律研究[J]. 岩石力学与工程学报, 2020, 39(9): 1797-1807. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009007.htm

    LI Chun, HU Yaoqing, ZHANG Chunwang, et al. Brazilian split characteristics and mechanical property evolution of granite after cyclic cooling at different temperatures[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9): 1797-1807. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009007.htm
    [14]
    平琦, 苏海鹏, 马冬冬, 等. 不同高温作用后石灰岩物理与动力特性试验研究[J]. 岩土力学, 2021, 42(4): 932-942, 953. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104007.htm

    PING Qi, SU Haipeng, MA Dongdong, et al. Experimental study on physical and dynamic mechanical properties of limestone after different high temperature treatments[J]. Rock and Soil Mechanics, 2021, 42(4): 932-942, 953. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104007.htm
    [15]
    HUANG Y H, YANG S Q, BU Y S. Effect of thermal shock on the strength and fracture behavior of pre-flawed granite specimens under uniaxial compression[J]. Theoretical and Applied Fracture Mechanics, 2020, 106: 102474.
    [16]
    YANG S Q, RANJITH P G, JING H W, et al. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments[J]. Geothermics, 2017, 65: 180-197.
    [17]
    FAN L F, WU Z J, WAN Z, et al. Experimental investigation of thermal effects on dynamic behavior of granite[J]. Applied Thermal Engineering, 2017, 125: 94-103.
    [18]
    杨圣奇, 田文岭, 董晋鹏. 高温后两种晶粒花岗岩破坏力学特性试验研究[J]. 岩土工程学报, 2021, 43(2): 281-289. doi: 10.11779/CJGE202102008

    YANG Shengqi, TIAN Wenling, DONG Jinpeng. Experimental study on failure mechanical properties of granite with two grain sizes after thermal treatment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 281-289. (in Chinese) doi: 10.11779/CJGE202102008
    [19]
    KURUPPU M D, OBARA Y, AYATOLLAHI M R, et al. ISRM-suggested method for determining the mode Ⅰ static fracture toughness using semi-circular bend specimen[J]. Rock Mechanics and Rock Engineering, 2014, 47(1): 267-274.
    [20]
    FENG G, KANG Y, MENG T, et al. The influence of temperature on mode Ⅰ fracture toughness and fracture characteristics of sandstone[J]. Rock Mechanics and Rock Engineering, 2017, 50(8): 2007-2019.
    [21]
    SHAO Z L, TANG X H, WANG X G. The influence of liquid nitrogen cooling on fracture toughness of granite rocks at elevated temperatures: an experimental study[J]. Engineering Fracture Mechanics, 2021, 246: 107628.
    [22]
    PENG K, LV H, YAN F Z, et al. Effects of temperature on mechanical properties of granite under different fracture modes[J]. Engineering Fracture Mechanics, 2020, 226: 106838.
    [23]
    谢和平. 分形-岩石力学导论[M]. 北京: 科学出版社, 2005.

    XIE Heping. Introduction to Fractal-Rock Mechanics[M]. Beijing: Science Press, 2005. (in Chinese)
    [24]
    周磊, 董玉清, 朱哲明, 等. 高温对花岗岩细观及宏观力学断裂特性的影响[J]. 中南大学学报(自然科学版), 2022, 53(4): 1381-1391. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202204023.htm

    ZHOU Lei, DONG Yuqing, ZHU Zheming, et al. Influence of high temperature on micro and macro mechanical fracture characteristics of granite[J]. Journal of Central South University (Science and Technology), 2022, 53(4): 1381-1391. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202204023.htm
    [25]
    WU X G, HUANG Z W, CHENG Z, et al. Effects of cyclic heating and LN2-cooling on the physical and mechanical properties of granite[J]. Applied Thermal Engineering, 2019, 156: 99-110.
    [26]
    HAO J W, QIAO L, LIU Z Y, et al. Effect of thermal treatment on physical and mechanical properties of sandstone for thermal energy storage: a comprehensive experimental study[J]. Acta Geotechnica, 2022, 17(9): 3887-3908.
    [27]
    YANG S Q, XU P, LI Y B, et al. Experimental investigation on triaxial mechanical and permeability behavior of sandstone after exposure to different high temperature treatments[J]. Geothermics, 2017, 69: 93-109.
    [28]
    WONG L N Y, ZHANG Y H, WU Z J. Rock strengthening or weakening upon heating in the mild temperature range?[J]. Engineering Geology, 2020, 272: 105619.
    [29]
    ZHUANG D D, YIN T B, LI Q, et al. Effect of injection flow rate on fracture toughness during hydraulic fracturing of hot dry rock (HDR)[J]. Engineering Fracture Mechanics, 2022, 260: 108207.
  • Cited by

    Periodical cited type(4)

    1. 唐宇,阳军生,郑响凑,童甲修,汤冲. 高温富水隧道弱风化片麻岩力学特性试验研究. 岩石力学与工程学报. 2025(01): 128-139 .
    2. 朱振南,王殿永,杨圣奇,解经宇,袁益龙,吴廷尧,田文岭,孙博文,田红,陈劲. 不同冷却速率下干热花岗岩渗透率演化特征对比研究. 岩石力学与工程学报. 2024(02): 385-398 .
    3. 周韬,范永林,陈家嵘,周昌台. 热损伤花岗岩力学劣化特性及损伤演化规律研究. 矿业科学学报. 2024(03): 351-360 .
    4. 何将福,任成程,何坤,余启航,李欣儒,邓旭. 循环热冲击花岗岩微观裂隙表征与渗透特性演化规律. 煤田地质与勘探. 2024(12): 131-142 .

    Other cited types(7)

Catalog

    Article views (323) PDF downloads (110) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return