• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Lei, LI Rui, QIN Hao, LIU Yang. Dynamic mechanical properties and microscopic damage characteristics of deep skarn after high-temperature treatment[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1166-1174. DOI: 10.11779/CJGE202206022
Citation: LIU Lei, LI Rui, QIN Hao, LIU Yang. Dynamic mechanical properties and microscopic damage characteristics of deep skarn after high-temperature treatment[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1166-1174. DOI: 10.11779/CJGE202206022

Dynamic mechanical properties and microscopic damage characteristics of deep skarn after high-temperature treatment

More Information
  • Received Date: August 17, 2021
  • Available Online: September 22, 2022
  • The skarn at a depth of 700 m is taken as the research object to study the dynamic behaviors of deep rocks under high temperature. The impact compression tests at different impact air pressures (0.8, 1.0 and 1.2 MPa) are carried out on the skarn at room temperature and after high-temperature treatment (200 ℃, 400 ℃, 600 ℃ and 800 ℃) by using the split Hopkinson press bar experimental device. The fracture surface is observed by the SEM scanning electron microscope and XRD phase characteristic analysis technology to explore the micro-failure mechanism of the skarn under high temperature and dynamic load. The test results show that under the same impact air pressure, the strength of the skarn deteriorates and the ductility increases with the increase of temperature. And at the same temperature, both the strength and deformation of the skarn increase with the increase of impact pressure, showing obvious strain rate effect. With the increase of impact pressure or temperature, the crushing degree of the skarn becomes more and more intense, and the fragmentation becomes smaller and smaller, and especially smaller particles are mainly crushed at 800℃. The change of internal composition and structure is the main reason for the change of mechanical properties of the skarn. The brittle failure of the skarn is mainly transgranular and intergranular fracture at 25℃ ~ 400℃. 400℃ ~ 600℃ is the threshold temperature range of skarn transformation from brittle to plastic. When the temperature degree is up to 600℃ ~ 800℃, it transforms into dimple and slip fracture.
  • [1]
    何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005, 24(16): 2803–2813. doi: 10.3321/j.issn:1000-6915.2005.16.001

    HE Man-chao, XIE He-ping, PENG Su-ping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803–2813. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.16.001
    [2]
    何满潮, 郭平业. 深部岩体热力学效应及温控对策[J]. 岩石力学与工程学报, 2013, 32(12): 2377–2393. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201312001.htm

    HE Man-chao, GUO Ping-ye. Deep rock mass thermodynamic effect and temperature control measures[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2377–2393. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201312001.htm
    [3]
    熊良宵, 虞利军. 高温作用下和高温后岩石力学特性的研究进展[J]. 地质灾害与环境保护, 2018, 29(1): 76–82. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201801016.htm

    XIONG Liang-xiao, YU Li-jun. Advances of mechanical properties of rock under high temperature and after high temperature[J]. Journal of Geological Hazards and Environment Preservation, 2018, 29(1): 76–82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201801016.htm
    [4]
    邓申缘, 姜清辉, 商开卫, 等. 高温对花岗岩微结构及渗透性演化机制影响分析[J]. 岩土力学, 2021, 42(6): 1601–1611. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106014.htm

    DENG Shen-yuan, JIANG Qing-hui, SHANG Kai-wei, et al. Effect of high temperature on micro-structure and permeability of granite[J]. Rock and Soil Mechanics, 2021, 42(6): 1601–1611. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106014.htm
    [5]
    贾蓬, 杨其要, 刘冬桥, 等. 高温花岗岩水冷却后物理力学特性及微观破裂特征[J]. 岩土力学, 2021, 42(6): 1568–1578. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106011.htm

    JIA Peng, YANG Qi-yao, LIU Dong-qiao, et al. Physical and mechanical properties and related microscopic characteristics of high-temperature granite after water-cooling[J]. Rock and Soil Mechanics, 2021, 42(6): 1568–1578. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106011.htm
    [6]
    夏开文, 王帅, 徐颖, 等. 深部岩石动力学实验研究进展[J]. 岩石力学与工程学报, 2021, 40(3): 448–475. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202103002.htm

    XIA Kai-wen, WANG Shuai, XU Ying, et al. Advances in experimental studies for deep rock dynamics[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 448–475. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202103002.htm
    [7]
    KLEPACZKO J R. Behavior of rock-like materials at high strain rates in compression[J]. International Journal of Plasticity, 1990, 6(4): 415–432.
    [8]
    胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾[J]. 爆炸与冲击, 2014, 34(6): 641–657. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201406001.htm

    HU Shi-sheng, WANG Li-li, SONG Li, et al. Review of the development of Hopkinson pressure bar technique in China[J]. Explosion and Shock Waves, 2014, 34(6): 641–657. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201406001.htm
    [9]
    陈强, 王志亮. 分离式霍普金森压杆在岩石力学实验中的应用[J]. 实验室研究与探索, 2012, 31(11): 146–149. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY201211046.htm

    CHEN Qiang, WANG Zhi-liang. Application of split Hopkinson pressure bar in rock mechanics experiments[J]. Research and Exploration in Laboratory, 2012, 31(11): 146–149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY201211046.htm
    [10]
    尹土兵, 李夕兵, 王斌, 等. 高温后砂岩动态压缩条件下力学特性研究[J]. 岩土工程学报, 2011, 33(5): 777–784. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105022.htm

    YIN Tu-bing, LI Xi-bing, WANG Bin, et al. Mechanical properties of sandstones after high temperature under dynamic loading[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 777–784. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105022.htm
    [11]
    刘石, 许金余. 高温作用对花岗岩动态压缩力学性能的影响研究[J]. 振动与冲击, 2014, 33(4): 195–198. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201404035.htm

    LIU Shi, XU Jin-yu. Effect of high temperature on dynamic compressive mechanical properties of granite[J]. Journal of Vibration and Shock, 2014, 33(4): 195–198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201404035.htm
    [12]
    李明, 茅献彪, 曹丽丽, 等. 高温后砂岩动力特性应变率效应的实验研究[J]. 岩土力学, 2014, 35(12): 3479–3488. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412019.htm

    LI Ming, MAO Xian-biao, CAO Li-li, et al. Experimental study of mechanical properties on strain rate effect of sandstones after high temperature[J]. Rock and Soil Mechanics, 2014, 35(12): 3479–3488. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412019.htm
    [13]
    WANG Z L, SHI H, WANG J G. Mechanical behavior and damage constitutive model of granite under coupling of temperature and dynamic loading[J]. Rock Mechanics and Rock Engineering, 2018, 51(10): 3045–3059.
    [14]
    FAN L F, WU Z J, WAN Z, et al. Experimental investigation of thermal effects on dynamic behavior of granite[J]. Applied Thermal Engineering, 2017, 125: 94–103.
    [15]
    平琦, 吴明静, 张欢, 等. 高温条件下砂岩动态力学特性实验研究[J]. 地下空间与工程学报, 2019, 15(3): 691–698. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201903008.htm

    PING Qi, WU Ming-jing, ZHANG Huan, et al. Experimental study on dynamic mechanical characteristics of sandstone under actual high temperature conditions[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(3): 691–698. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201903008.htm
    [16]
    平琦, 吴明静, 袁璞, 等. 冲击载荷作用下高温砂岩动态力学性能试验研究[J]. 岩石力学与工程学报, 2019, 38(4): 782–792. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904012.htm

    PING Qi, WU Ming-jing, YUAN Pu, et al. Experimental study on dynamic mechanical properties of high temperature sandstone under impact loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 782–792. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904012.htm
    [17]
    方维萱, 郭玉乾, 贾润幸, 等. 论云南个旧锡铜钨三稀金属矿集区叠加成矿系统与垂向构造岩相学结构的关系[J]. 地质力学学报, 2021, 27(4): 557–584. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202104005.htm

    FANG Wei-xuan, GUO Yu-qian, JIA Run-xing, et al. On relationship between the superimposed mineralization systems and the zoning patterns of vertical tectonic lithofacies in the Gejiu concentration area of Sn-Cu-W and three rare metals in Yunnan[J]. Journal of Geomechanics, 2021, 27(4): 557–584. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202104005.htm
    [18]
    ZHOU Y X, XIA K, LI X B, et al. Suggested methods for determining the dynamic strength parameters and mode-Ⅰ fracture toughness of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 49: 105–112.
    [19]
    宋力, 胡时胜. SHPB数据处理中的二波法与三波法[J]. 爆炸与冲击, 2005, 25(4): 368–373. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200504013.htm

    SONG Li, HU Shi-sheng. Two-wave and three-wave method in SHPB data processing[J]. Explosion and Shock Waves, 2005, 25(4): 368–373. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200504013.htm
    [20]
    YIN T B, WANG P, YANG J, et al. Mechanical behaviors and damage constitutive model of thermally treated sandstone under impact loading[J]. IEEE Access, 2018, 6: 72047–72062.
    [21]
    宋力, 胡时胜. SHPB测试中的均匀性问题及恒应变率[J]. 爆炸与冲击, 2005, 25(3): 207–216. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200503002.htm

    SONG Li, HU Shi-sheng. Stress uniformity and constant strain rate in SHPB test[J]. Explosion and Shock Waves, 2005, 25(3): 207–216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200503002.htm
    [22]
    杨圣奇, 田文岭, 董晋鹏. 高温后两种晶粒花岗岩破坏力学特性试验研究[J]. 岩土工程学报, 2021, 43(2): 281–289. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202102010.htm

    YANG Sheng-qi, TIAN Wen-ling, DONG Jin-peng. Experimental study on failure mechanical properties of granite with two grain sizes after thermal treatment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 281–289. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202102010.htm
    [23]
    陶明, 汪军, 李占文, 等. 冲击荷载下花岗岩层裂断口细–微观试验研究[J]. 岩石力学与工程学报, 2019, 38(11): 2172–2181. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911003.htm

    TAO Ming, WANG Jun, LI Zhan-wen, et al. Meso-and micro-experimental research on the fracture of granite spallation under impact loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2172–2181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911003.htm
    [24]
    李晓锋, 李海波, 刘凯, 等. 冲击荷载作用下岩石动态力学特性及破裂特征研究[J]. 岩石力学与工程学报, 2017, 36(10): 2393–2405. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201710007.htm

    LI Xiao-feng, LI Hai-bo, LIU Kai, et al. Dynamic properties and fracture characteristics of rocks subject to impact loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2393–2405. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201710007.htm
  • Cited by

    Periodical cited type(9)

    1. 王磊,陈礼鹏,袁秋鹏,焦振华,刘怀谦. 不同冲击气压下煤样动态剪切强度的长径比效应. 岩土工程学报. 2024(01): 131-139 . 本站查看
    2. 宋世兴. 基于微观机理的高温后大理岩动态力学特性分析. 黄金. 2024(07): 11-16 .
    3. 赵泽虎,李祥龙,乔登攀,胡启文,王建国. 深埋安山岩动态力学特性及破碎特征. 采矿与岩层控制工程学报. 2024(04): 171-182 .
    4. 梁潇,吴俊,齐文超,冉秋硕,刘玉法,刘磊. 高温作用下页岩动态力学特性及微观损伤特征研究. 矿产保护与利用. 2024(04): 48-57 .
    5. 刘浩杉,张智宇,李祥龙,黄永辉,王建国. 动载下磁铁矿石的动力学特性及破坏模式分析. 爆破. 2023(01): 21-29+84 .
    6. 刘少坤,李清,黄晨. 高温后对硅质砂岩的动态力学性能研究. 工程爆破. 2023(03): 24-30 .
    7. 皮芸烽,郭启文,李长洪,孙长坤,李嘉顺,钟伟慈. 单轴循环加卸载条件下矽卡岩弹性模量研究. 中国矿业. 2023(07): 173-181 .
    8. 叶海旺,钱正昆,雷涛,温颖,李睿. 冲击载荷下石墨矿石动力学特性的层理效应及宏微观破坏机理. 爆炸与冲击. 2023(12): 27-39 .
    9. 叶海旺,李兴旺,雷涛,王其洲,余梦豪,严立德,韦文蓬,王炯辉,赵明生,余红兵,HASSAN A M Abdelkader. 石墨矿石品位对其动力学特性的影响研究. 爆破. 2022(04): 25-31+52 .

    Other cited types(9)

Catalog

    Article views (191) PDF downloads (154) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return