• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Dong-mei, PANG Jian, REN Hui, HAN Lei. Observed deformation behavior of Gongbei Tunnel of Hong Kong-Zhuhai-Macao Bridge during construction[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1632-1641. DOI: 10.11779/CJGE202009007
Citation: ZHANG Dong-mei, PANG Jian, REN Hui, HAN Lei. Observed deformation behavior of Gongbei Tunnel of Hong Kong-Zhuhai-Macao Bridge during construction[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1632-1641. DOI: 10.11779/CJGE202009007

Observed deformation behavior of Gongbei Tunnel of Hong Kong-Zhuhai-Macao Bridge during construction

More Information
  • Received Date: October 15, 2019
  • Available Online: December 07, 2022
  • The excavation of shallow buried tunnels with super-large section in coastal water-rich strata with complex geological conditions faces a lot of risks. The surrounding soil is easy to be disturbed during excavation, causing the ground deformation. The new method of "freezing-sealing pipe-roof for pre-support" can effectively control the surface settlement caused by the excavation construction. The change of surface displacement during tunnel excavation using this method is mainly affected by the factors such as the ground loss caused by tunnel excavation, expansion of frozen soil and floating effect after tunnel excavation unloading. The rules of tunnel crown displacement, horizontal convergence and ground deformation are investigated based on the in-situ observation. The displacements of the tunnel crown and the corresponding surface are consistent. In the longitudinal direction, the crown and ground surface move up in the middle section and move down in the sections at both sides near the working shafts. Under the influence of layered excavation disturbance, the inward deformation of the soil at both sides of the tunnel leads to the increase of horizontal convergence, and the maximum horizontal convergence is 15.72 mm, which is about 0.8% of the transverse span of the tunnel. The new freezing-sealing pipe-roof method can solve the problem of water leakage in the water-rich strata, and greatly reduce the internal deformation of the tunnel. However, the problem of surface heaving caused by soil freezing and the surface settlement after soil thawing still require great attention.
  • [1]
    黄俊, 张顶立. 地铁暗挖隧道上覆地层大变形规律分析[J]. 岩土力学, 2004(8): 1288-1292, 1301. doi: 10.3969/j.issn.1000-7598.2004.08.024

    HUANG Jun, ZHANG Ding-li. Analysis of large deformation regularity in stratum above metro tunnel[J]. Rock & Soil Mechanics, 2004(8): 1288-1292, 1301. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.08.024
    [2]
    VAHEDIFARD F L D, MEEHAN C L. Displacement-based internal design of geosynthetic-reinforced earth structures subjected to seismic loading conditions[J]. Géotechnique, 2013, 63: 451-462. doi: 10.1680/geot.11.P.130
    [3]
    张成平, 张顶立, 王梦恕, 等. 城市隧道施工诱发的地面塌陷灾变机制及其控制[J]. 岩土力学, 2010, 31(增刊1): 303-309. doi: 10.16285/j.rsm.2010.s1.041

    ZHANG Cheng-ping, ZHANG Ding-li, WANG Meng-shu, et al. Catastrophe mechanism and control technology of ground collapse induced by urban tunneling[J]. Rock & Soil Mechanics, 2010, 31(S1): 303-309. (in Chinese) doi: 10.16285/j.rsm.2010.s1.041
    [4]
    MUSSO G. Jacked pipe provides roof for underground construction in busy urban area[J]. Civil Engineering, 1979, 49(11): 79-82.
    [5]
    陈湘生. 冻结法几个关键问题及在地下空间近接工程中最新应用[J]. 隧道建设, 2015, 35(12): 1243-1251. doi: 10.3973/j.issn.1672-741X.2015.12.002

    CHEN Xiang-sheng. Several key points of artificial ground freezing method and its latest application in China[J]. Tunnel Construction, 2015, 35(12): 1243-1251. (in Chinese) doi: 10.3973/j.issn.1672-741X.2015.12.002
    [6]
    LIU J G, MA B S, CHENG Y. Design of the Gongbei tunnel using a very large cross-section pipe-roof and soil freezing method[J]. Tunnelling & Underground Space Technology, 2018, 72: 28-40.
    [7]
    ZHANG P, MA B S, ZENG C, et al. Key techniques for the largest curved pipe jacking roof to date: a case study of Gongbei tunnel[J]. Tunnelling & Underground Space Technology, 2016, 59: 134-145.
    [8]
    陶德敬, 王明年, 刘大刚. 冻结法隧道施工引起的地表移动及变形预测[J]. 现代隧道技术, 2006, 43(6): 45-50. doi: 10.3969/j.issn.1009-6582.2006.06.009

    TAO De-jing, WANG Ming-nian, LIU Da-gang. Prediction of surface movement and deformation caused by the freezing method construction of tunnels[J]. Modern Tunnelling Technology, 2006, 43(6): 45-50. (in Chinese) doi: 10.3969/j.issn.1009-6582.2006.06.009
    [9]
    肖世国, 夏才初, 朱合华, 等. 管幕内箱涵顶进中顶部管幕竖向变形预测[J]. 岩石力学与工程学报, 2006, 25(9): 1887-1892. doi: 10.3321/j.issn:1000-6915.2006.09.023

    XIAO Shi-guo, XIA Cai-chu, ZHU He-hua, et al. Vertical deformation prediction on upper pipe-roof during a box culvert being pushed within a pipe-roof[J]. Chinese Journal of Rock Mechanics & Engineering, 2006, 25(9): 1887-1892. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.09.023
    [10]
    朱合华, 闫治国, 李向阳, 等. 饱和软土地层中管幕法隧道施工风险分析[J]. 岩石力学与工程学报, 2005, 24(增刊2): 5549-5554. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2005S2050.htm

    ZHU He-hua, YAN Zhi-guo, LI Xiang-yang, et al. Analysis of construction risks for pipe-roofing tunnel in saturated soft soil[J]. Chinese Journal of Rock Mechanics & Engineering, 2005, 24(S2): 5549-5554. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2005S2050.htm
    [11]
    胡向东, 邓声君, 汪洋. 拱北隧道“钢管–冻土”复合结构承载力试验研究[J]. 岩土工程学报, 2018, 40(8): 1481-1490. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808017.htm

    HU Xiang-dong, DENG Sheng-jun, WANG Yang. Mechanical tests on bearing capacity of steel pipe-frozen soil composite structure applied in Gongbei Tunnel[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1481-1490. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808017.htm
    [12]
    任辉, 胡向东, 洪泽群, 等. 超浅埋暗挖隧道管幕冻结法积极冻结方案试验研究[J]. 岩土工程学报, 2019, 41(2): 131-139. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902011.htm

    REN Hui, HU Xiang-dong, HONG Ze-qun, et al. Experimental study on active freezing scheme of freeze-sealing pipe roof used in ultra-shallow buried tunnels[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 131-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902011.htm
    [13]
    胡向东, 李忻轶, 吴元昊, 等. 拱北隧道管幕冻结法管间冻结封水效果实测研究[J]. 岩土工程学报, 2019, 41(12): 2207-2214. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912008.htm

    HU Xiang-dong, LI Xin-yi, WU Yuan-hao, et al. Effect of water-proofing in Gongbei Tunnel by freeze-sealing pipe roof method with field temperature data[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2207-2214. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912008.htm
    [14]
    熊昊翔, 任辉, 翁远林. 拱北隧道5台阶14部开挖施工组织方案分析[J]. 隧道建设, 2019, 39(2): 281-286. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201902024.htm

    XIONG Hao-xiang, REN Hui, WENG Yuan-lin. Analysis of construction organization scheme of five-bench fourteenstep excavation applied to Gongbei Tunnel[J]. Tunnel Construction, 2019, 39(2): 281-286. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201902024.htm
  • Related Articles

    [1]LIU Cheng-yu, CHEN Bo-wen, LIN Wei, LUO Hong-lin. Prediction model for settlement caused by damage of underground pipelines and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 416-424. DOI: 10.11779/CJGE202103003
    [2]PAN Wei-qiang. Monitoring and analysis of ground settlement during pipe roof construction of pipe-jacking groups in soft soil areas[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 201-204. DOI: 10.11779/CJGE2019S1051
    [3]ZHANG Cheng-cheng, SHI Bin, ZHU Hong-hu, WEI Guang-qing. Theoretical analysis of mechanical coupling between soil and fiber optic strain sensing cable for distributed monitoring of ground settlement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1670-1678. DOI: 10.11779/CJGE201909011
    [4]LIN Cun-gang, XIA Tang-dai, LIANG Rong-zhu, WU Shi-ming. Estimation of shield tunnelling-induced ground surface settlements by virtual image technique[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1438-1446. DOI: 10.11779/CJGE201408009
    [5]REN Ying-nan, WANG Hong-qi, WANG Jian-hua. Settlement control of Qiantang River embankments during undercrossing of EPB shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 936-939.
    [6]LI Ying, HE Zhong-ze, YAN Gui-hua, LIAO Zhan-yu, LIANG Shu-ying. Excavation dewatering and ground subsidence in dual structural stratum of Wuhan[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 767-772.
    [7]Analysis of settlements caused by dewatering in Yishanlu metro station in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1961-1968.
    [8]Estimation of ground settlement aroused by deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1821-1828.
    [9]Analysis and prediction of Ground settlement induced by Subway Construction with Shield tunneling in Xi’an Loess strata[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [10]Study on influence of seepage of metro tunnels in soft soil on the settlements of tunnels and ground[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(2): 243-247.
  • Cited by

    Periodical cited type(21)

    1. 俞奎,章敏,秦文权,孙静雯,张开翔,宋利埼. 隧道穿越下埋地管线分布式光纤变形及脱空反演分析. 岩土力学. 2025(03): 894-904 .
    2. 张连贵,刘峰建,张鑫,郭广礼,李怀展,宫亚强. 采动影响下浅埋输油气管线变形监测与风险性评价方法及应用实践. 金属矿山. 2024(03): 183-189 .
    3. 刘奇,刘相林,曹广勇,赵金海,蒋长宝. 基于OFDR的采动覆岩铰接结构回转角度及“三带”变形表征研究. 煤炭科学技术. 2024(03): 63-73 .
    4. 喻文昭,朱鸿鹄,王德洋,谢天铖,裴华富,施斌. 荷载作用下砂土边坡-管道相互作用试验研究. 岩土力学. 2024(05): 1309-1320 .
    5. 崔萧. 基于DVS的地下管网及道路病害监测技术应用. 岩土工程技术. 2024(03): 322-329 .
    6. 庞文彬,郑鑫,葛亮,张凌云,张宁宁. 基于振动提取的沙漠埋地管道弯曲变形监测技术研究. 石油化工自动化. 2024(04): 66-70 .
    7. 李长山,迟帅. 基于时序InSAR遥感监测的中山市软土地面沉降特征及成因研究. 地质灾害与环境保护. 2024(04): 31-38 .
    8. 胡少伟,杨金辉. 大口径高性能聚氯乙烯管道研发与工程安全保障技术. 工程力学. 2023(01): 1-31 .
    9. 朱鸿鹄. 工程地质界面:从多元表征到演化机理. 地质科技通报. 2023(01): 1-19 .
    10. 史淞戈,施斌,刘苏平,张诚成,顾凯,何健辉. 钻孔回填料粒径对传感光缆应变耦合性影响研究. 岩土工程学报. 2023(01): 162-170 . 本站查看
    11. 卢毅,宋泽卓,刘瑾,卜凡,祁长青. 基于DFOS的通州湾地区地面沉降监测与变形分析. 河海大学学报(自然科学版). 2023(02): 81-88 .
    12. 喻文昭,朱鸿鹄,王德洋,李豪杰,叶霄. 埋地管道竖向隆起破坏研究综述. 防灾减灾工程学报. 2023(02): 189-200 .
    13. 张玉,梁昊,林亮,周游,赵青松. 不同沉降方式下埋地管道力学响应试验研究. 岩土力学. 2023(06): 1645-1656 .
    14. 魏祥龙,尹书冉,夏志康,杨涵苑,左利钦,林青炜. 软体排塌陷弯曲变形的应变响应特征分析. 水运工程. 2023(08): 90-95+138 .
    15. 魏祥龙,杨海亮,左利钦,陆永军,杨涵苑,袁赛瑜. 光纤传感监测护底软体排的可行性探讨. 水电能源科学. 2023(12): 147-151 .
    16. 张鑫,郭广礼,李怀展,张连贵,刘峰建,蒋乾,陈延康. 煤矿开采影响下浅埋输油管线变形及力学响应特性. 科学技术与工程. 2023(35): 15052-15059 .
    17. 韦超,朱鸿鹄,高宇新,王静,张巍,施斌. 地面塌陷分布式光纤感测模型试验研究. 岩土力学. 2022(09): 2443-2456 .
    18. 胡健,雒燕,刘瑾,魏世杰,何承宗,李明阳,张晨阳. 基于FBG机械连接部件微渗漏监测应用. 中国海洋平台. 2022(06): 28-34 .
    19. 施斌,朱鸿鹄,张丹,程刚. 从岩土体原位检测、探测、监测到感知. 工程地质学报. 2022(06): 1811-1818 .
    20. 刘保余,袁龙春,尚博,侯东,蒋勇,赵冰,张东. 长输油气埋地管道外检测技术研究. 管道技术与设备. 2021(03): 31-34 .
    21. 丁志国,龚占龙,盛智勇. FBG传感器在排水管道水位实时监测中的应用. 河北农机. 2021(07): 52-53 .

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return