• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SUN Jin-xin, ZHONG Xiao-chun, FU Wei, LUO Jin-hai, DENG You-chun. Experimental study on effects of different cations on stability of slurry within slurry shield[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1525-1531. DOI: 10.11779/CJGE202008018
Citation: SUN Jin-xin, ZHONG Xiao-chun, FU Wei, LUO Jin-hai, DENG You-chun. Experimental study on effects of different cations on stability of slurry within slurry shield[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1525-1531. DOI: 10.11779/CJGE202008018

Experimental study on effects of different cations on stability of slurry within slurry shield

More Information
  • Received Date: September 02, 2019
  • Available Online: December 05, 2022
  • In view of the problem that the high-salinity stratum intrusion during construction of submarine tunnels by the slurry shield will lead to the decrease of the stability of slurry, this study aims to investigate the effects of different salt solutions on the stability of slurry via colloidal flocculation mechanism by adding salt solutions into slurry and testing change of the parameters such as bleeding rate, zeta potential, characteristic particle sizes and seepage discharge of the slurry. The results show that compared with that by adding fresh water, the slurry by adding 1% salt solution in which the quality of water is 15 times that of bentonite, the zeta potential of slurry decreases, and its characteristic particle sizes and seepage discharge increase. The salt solution affects the stability of slurry mainly by decreasing its zeta potential, which promotes slurry particles to flocculate and to dilute the slurry. When the mixing ratio is more than 5% and keeps to increase, if the salt solution is NaCl, the zeta potential changes a little and then keeps steady, and the characteristic particle size d10 of the slurry continues to increase, while d50and d85 remain basically the same. The particles of slurry coagulate, and the slurry remains stable and does not bleed. If the salt solution is CaCl2 or MgCl2, the zeta potential decreases continuously, the characteristic particle sizes d10, d50 and d85 remain basically unchanged, resulting in flocculation and bleeding. Ca2+ and Mg2+ have a greater influence on the stability of slurry than Na+. Therefore, when using the slurry shield to excavate the subsea tunnels in different sea areas, the effects of groundwater on the stability of slurry should be considered in accordance with the chemical type of groundwater.
  • [1]
    YING H M, POON S W. Use of full face slurry for pipe jacking in Hong Kong's reclaimed land[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S1): 2438-2442.
    [2]
    崔溦, 黄小龙, 李永杰. 陆丰核电海底排水隧道泥水盾构泥浆配比试验研究[J]. 水电能源科学, 2018, 36(6): 125-128, 87. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201806033.htm

    CUI Wei, HUANG Xiao-long, LI Yong-jie. Experimental study on preparation of slurry for slurry shields about the bottom of sea drainage tunnel in Lufeng[J]. Water Resources and Power, 2018, 36(6): 125-128, 87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201806033.htm
    [3]
    陈辰. 跨海地铁隧道泥水平衡盾构复杂地层泥浆配制技术分析[J]. 建筑技术开发, 2017, 44(3): 88-90. doi: 10.3969/j.issn.1001-523X.2017.03.054

    CHEN Chen. Analysis of cross sea subway tunnel formulate slurry in complex formation[J]. Building Technique Development, 2017, 44(3): 88-90. (in Chinese) doi: 10.3969/j.issn.1001-523X.2017.03.054
    [4]
    张宁, 朱伟, 闵凡路. 南京纬三路过江通道泥水盾构泥浆配制试验研究[J]. 隧道建设, 2015, 35(10): 1022-1027. doi: 10.3973/j.issn.1672-741X.2015.10.008

    ZHANG Ning, ZHU Wei, MIN Fan-lu. Experimental study on preparation of slurry for slurry shields: case study on Weisanlu Yangtze River Tunnel in Nanjing[J]. Tunnel Construction, 2015, 35(10): 1022-1027. (in Chinese) doi: 10.3973/j.issn.1672-741X.2015.10.008
    [5]
    王廷. 强渗透地层泥水盾构绿色泥浆配制及其适应性研究[D]. 北京: 北京交通大学, 2015.

    WANG Ting. A study on preparation of environment friendly slurry and its adaptation during slurry shield tunneling in high permeability stratum[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese)
    [6]
    MIN Fan-lu, ZHU Wei, HAN Xiao-rui. Filter cake formation for slurry shield tunneling in highly permeable sand[J]. Tunnelling and Underground Space Technology, 2013, 38: 423-430. doi: 10.1016/j.tust.2013.07.024
    [7]
    闵凡路, 赵小鹏, 朱伟, 等. 不同泥浆渗透模式下形成泥膜的闭气效果探讨[J]. 现代隧道技术, 2015, 52(4): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201504010.htm

    MIN Fan-lu, ZHAO Xiao-peng, ZHU Wei, et al. Airtightness of filter cakes formed under different slurry infiltration modes[J]. Modern Tunnelling Technology, 2015, 52(4): 68-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201504010.htm
    [8]
    MIN Fan-lu, ZHU Wei, LIN Cheng, et al. Opening the excavation chamber of the large-diameter size slurry shield: a case study in Nanjing Yangtze River Tunnel in China[J]. Tunnelling and Underground Space Technology, 2015, 46: 18-27. doi: 10.1016/j.tust.2014.10.002
    [9]
    姜腾, 夏鹏举, 闵凡璐. 泥浆性质对泥水盾构泥膜闭气性影响试验研究[J]. 现代隧道技术, 2016, 53(2): 134-140. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201602020.htm

    JIANG Teng, XIA Peng-ju, MIN Fan-lu. Experimental study on the influence of slurry properties on the airtightness of the filter cakes of slurry shields[J]. Modern Tunnelling Technology, 2016, 53(2): 134-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201602020.htm
    [10]
    邓亨义, 徐雪莹, 陈明娟. 富水砂卵石地层盾构隧道施工泥浆的研究与应用[J]. 中国工程科学, 2010, 12(12): 79-82. doi: 10.3969/j.issn.1009-1742.2010.12.015

    DENG Heng-yi, XU Xue-ying, CHEN Ming-juan. Research and application of construction slurry of shield tunnel under water-ich sandy gravel stratum[J]. Engineering Sciences, 2010, 12(12): 79-82. (in Chinese) doi: 10.3969/j.issn.1009-1742.2010.12.015
    [11]
    加瑞, 朱伟, 闵凡路. 泥浆颗粒级配和地层孔径对泥水盾构泥膜形成的影响[J]. 中国公路学报, 2017, 30(8): 100-108. doi: 10.3969/j.issn.1001-7372.2017.08.011

    JIA Rui, ZHU Wei, MIN Fan-lu. Effect of particle size distribution of slurry and pore size of stratum on formation of filter cake in slurry shield[J]. China Journal of Highway and Transport, 2017, 30(8): 100-108. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.08.011
    [12]
    刘成, 汤昕怡, 高玉峰. 砂性地层孔隙特征对泥水盾构泥浆成膜的影响[J]. 岩土工程学报, 2017, 39(11): 2002-2008. doi: 10.11779/CJGE201711007

    LIU Chen, TANG Xin-yi, GAO Yu-feng. Influence of pore characteristics of sand strata on filter-cake formation under slurry shield[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2002-2008. (in Chinese) doi: 10.11779/CJGE201711007
    [13]
    杜佳芮, 闵凡路, 姚占虎, 等. 海水侵入条件下泥水盾构泥浆及泥膜性质变化试验研究[J]. 隧道建设(中英文), 2018, 38(7): 1182-1188. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201807018.htm

    DU Jia-rui, MIN Fan-lu, YAO Zhan-hu, et al. Experimental study of property change of slurry and filter cake of slurry shield under seawater intrusion[J]. Tunnel Construction, 2018, 38(7): 1182-1188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201807018.htm
    [14]
    吕乾乾, 孙振川, 杨振兴, 等. 海水环境下盾构泥浆性能试验研究[J]. 隧道建设(中英文), 2019, 39(2): 211-218. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201902010.htm

    LÜ Qian-qian, SUN Zhen-chuan, YANG Zhen-xing, et al. Experimental study of shield slurry property under seawater environment[J]. Tunnel Construction, 2019, 39(2): 211-218. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201902010.htm
    [15]
    MIN Fan-lu, DU Jia-rui, ZHANG Nan, et al. Experimental study on property change of slurry and filter cake of slurry shield under seawater intrusion[J]. Tunnelling and Underground Space Technology, 2019, 88: 290-299.
    [16]
    程莹. 溶液环境及水生植物根系作用下GCL抗渗性能研究[D]. 武汉: 湖北工业大学, 2019.

    CHENG Ying. Impermeability of GCL under the Action of Solution Environment and Aquatic Plant Root System[D]. Wuhan: Hubei University of Technology, 2019. (in Chinese)
    [17]
    我国建立首个水下隧道技术创新平台[J]. 隧道建设(中英文), 2019, 39(8): 1246. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201908006.htm

    Establish of the first underwater tunnel technology innovation platform in China[J]. Tunnel Construction, 2019, 39(8): 1246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201908006.htm
    [18]
    林捷, 谢当汉, 陆天琳, 等. 含盐度对蒙脱土矿物絮凝影响的研究[J]. 中国水运(下半月), 2013, 13(10): 121-123, 226. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201310058.htm

    LIN Jie, XIE Dang-han, LU Tian-lin, et al. Study on the influence of salinity on flocculation of montmorillonite minerals[J]. China Water Transport, 2013, 13(10): 121-123, 226. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201310058.htm
    [19]
    黄文孝. 凝聚、絮凝及其应用[J]. 云南冶金, 1982(5): 22-27, 21. https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ198205009.htm

    HUANG Wen-xiao. Coagulation, flocculation and application[J]. Yunnan Metallurgy, 1982(5): 22-27, 21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ198205009.htm
    [20]
    谷建晓. 阳离子对蒙脱石胶体絮凝的影响[C]//中国地质学会、中国地质学会工程地质专业委员会. 2017年全国工程地质学术年会论文集, 2017, 桂林: 191-196.

    GU Jian-xiao. Effects of interlayer cations on its geo performances of montmorillonite[C]//Geological Society of China、China Geology Society IAEG China National Group, 2017, Guilin: 191-196. (in Chinese)
    [21]
    卢廷浩. 土力学[M]. 北京: 高等教育出版社, 2010.

    LU Ting-hao. Soil Mechanics[M]. Beijing: Higher Education Press, 2010. (in Chinese)
  • Related Articles

    [1]LIU Cheng-yu, CHEN Bo-wen, LIN Wei, LUO Hong-lin. Prediction model for settlement caused by damage of underground pipelines and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 416-424. DOI: 10.11779/CJGE202103003
    [2]PAN Wei-qiang. Monitoring and analysis of ground settlement during pipe roof construction of pipe-jacking groups in soft soil areas[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 201-204. DOI: 10.11779/CJGE2019S1051
    [3]ZHANG Cheng-cheng, SHI Bin, ZHU Hong-hu, WEI Guang-qing. Theoretical analysis of mechanical coupling between soil and fiber optic strain sensing cable for distributed monitoring of ground settlement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1670-1678. DOI: 10.11779/CJGE201909011
    [4]LIN Cun-gang, XIA Tang-dai, LIANG Rong-zhu, WU Shi-ming. Estimation of shield tunnelling-induced ground surface settlements by virtual image technique[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1438-1446. DOI: 10.11779/CJGE201408009
    [5]REN Ying-nan, WANG Hong-qi, WANG Jian-hua. Settlement control of Qiantang River embankments during undercrossing of EPB shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 936-939.
    [6]LI Ying, HE Zhong-ze, YAN Gui-hua, LIAO Zhan-yu, LIANG Shu-ying. Excavation dewatering and ground subsidence in dual structural stratum of Wuhan[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 767-772.
    [7]Analysis of settlements caused by dewatering in Yishanlu metro station in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1961-1968.
    [8]Estimation of ground settlement aroused by deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1821-1828.
    [9]Analysis and prediction of Ground settlement induced by Subway Construction with Shield tunneling in Xi’an Loess strata[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [10]Study on influence of seepage of metro tunnels in soft soil on the settlements of tunnels and ground[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(2): 243-247.
  • Cited by

    Periodical cited type(21)

    1. 俞奎,章敏,秦文权,孙静雯,张开翔,宋利埼. 隧道穿越下埋地管线分布式光纤变形及脱空反演分析. 岩土力学. 2025(03): 894-904 .
    2. 张连贵,刘峰建,张鑫,郭广礼,李怀展,宫亚强. 采动影响下浅埋输油气管线变形监测与风险性评价方法及应用实践. 金属矿山. 2024(03): 183-189 .
    3. 刘奇,刘相林,曹广勇,赵金海,蒋长宝. 基于OFDR的采动覆岩铰接结构回转角度及“三带”变形表征研究. 煤炭科学技术. 2024(03): 63-73 .
    4. 喻文昭,朱鸿鹄,王德洋,谢天铖,裴华富,施斌. 荷载作用下砂土边坡-管道相互作用试验研究. 岩土力学. 2024(05): 1309-1320 .
    5. 崔萧. 基于DVS的地下管网及道路病害监测技术应用. 岩土工程技术. 2024(03): 322-329 .
    6. 庞文彬,郑鑫,葛亮,张凌云,张宁宁. 基于振动提取的沙漠埋地管道弯曲变形监测技术研究. 石油化工自动化. 2024(04): 66-70 .
    7. 李长山,迟帅. 基于时序InSAR遥感监测的中山市软土地面沉降特征及成因研究. 地质灾害与环境保护. 2024(04): 31-38 .
    8. 胡少伟,杨金辉. 大口径高性能聚氯乙烯管道研发与工程安全保障技术. 工程力学. 2023(01): 1-31 .
    9. 朱鸿鹄. 工程地质界面:从多元表征到演化机理. 地质科技通报. 2023(01): 1-19 .
    10. 史淞戈,施斌,刘苏平,张诚成,顾凯,何健辉. 钻孔回填料粒径对传感光缆应变耦合性影响研究. 岩土工程学报. 2023(01): 162-170 . 本站查看
    11. 卢毅,宋泽卓,刘瑾,卜凡,祁长青. 基于DFOS的通州湾地区地面沉降监测与变形分析. 河海大学学报(自然科学版). 2023(02): 81-88 .
    12. 喻文昭,朱鸿鹄,王德洋,李豪杰,叶霄. 埋地管道竖向隆起破坏研究综述. 防灾减灾工程学报. 2023(02): 189-200 .
    13. 张玉,梁昊,林亮,周游,赵青松. 不同沉降方式下埋地管道力学响应试验研究. 岩土力学. 2023(06): 1645-1656 .
    14. 魏祥龙,尹书冉,夏志康,杨涵苑,左利钦,林青炜. 软体排塌陷弯曲变形的应变响应特征分析. 水运工程. 2023(08): 90-95+138 .
    15. 魏祥龙,杨海亮,左利钦,陆永军,杨涵苑,袁赛瑜. 光纤传感监测护底软体排的可行性探讨. 水电能源科学. 2023(12): 147-151 .
    16. 张鑫,郭广礼,李怀展,张连贵,刘峰建,蒋乾,陈延康. 煤矿开采影响下浅埋输油管线变形及力学响应特性. 科学技术与工程. 2023(35): 15052-15059 .
    17. 韦超,朱鸿鹄,高宇新,王静,张巍,施斌. 地面塌陷分布式光纤感测模型试验研究. 岩土力学. 2022(09): 2443-2456 .
    18. 胡健,雒燕,刘瑾,魏世杰,何承宗,李明阳,张晨阳. 基于FBG机械连接部件微渗漏监测应用. 中国海洋平台. 2022(06): 28-34 .
    19. 施斌,朱鸿鹄,张丹,程刚. 从岩土体原位检测、探测、监测到感知. 工程地质学报. 2022(06): 1811-1818 .
    20. 刘保余,袁龙春,尚博,侯东,蒋勇,赵冰,张东. 长输油气埋地管道外检测技术研究. 管道技术与设备. 2021(03): 31-34 .
    21. 丁志国,龚占龙,盛智勇. FBG传感器在排水管道水位实时监测中的应用. 河北农机. 2021(07): 52-53 .

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return