• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG De-yang, ZHU Hong-hu, WU Hai-ying, ZHU Bao, SHI Bin. Experimental study on buried pipeline instrumented with fiber optic sensors under ground collapse[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1125-1131. DOI: 10.11779/CJGE202006017
Citation: WANG De-yang, ZHU Hong-hu, WU Hai-ying, ZHU Bao, SHI Bin. Experimental study on buried pipeline instrumented with fiber optic sensors under ground collapse[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1125-1131. DOI: 10.11779/CJGE202006017

Experimental study on buried pipeline instrumented with fiber optic sensors under ground collapse

More Information
  • Received Date: June 24, 2019
  • Available Online: December 07, 2022
  • In recent years, the pipeline accidents caused by ground collapse are frequently reported. However, the relevant studies are still lagging behind, and there are few theories to predict the deformation and mechanical characteristics of buried pipelines and surrounding soils in the process of ground settlement and collapse. In this study, the stress state of the pipeline and soil settlements during ground collapse are investigated through fiber Bragg grating (FBG)-based model tests, and the method for calculating the bending moment of the pipeline using fiber-optic strain measurements is derived. The test results show that: (1) The compressive strains accumulate on the pipeline top and bottom with the increase of collapse volume, and both the pipeline sidewalls are in the strain state of tension. (2) According to the FBG strain monitoring results, the development of soil deformation can be divided into three stages, i.e., the stress redistribution stage, the creep compression stage and the stability stage after collapse. (3) The ground settlement pattern fits well with the modified Gaussian distribution. On this basis, the mathematical model between the horizontal strain measured by the fiber optic sensors and the ground settlement is established. At the same time, the results of theoretical calculation and experimental data are compared, and they appear to agree well with each other. This work provides a new approach to effectively evaluate the safety and implement hazard warning of buried pipelines.
  • [1]
    徐匆匆, 马向英, 何江龙, 等. 城市地下管线安全发展的现状、问题及解决办法[J]. 城市发展研究, 2013, 20(3): 108-118. doi: 10.3969/j.issn.1006-3862.2013.03.022

    XU Cong-cong, MA Xiang-ying, HE Jiang-long, et al. Status, problems and solutions of urban underground pipeline safety and development[J]. Urban Development Studies, 2013, 20(3): 108-118. (in Chinese) doi: 10.3969/j.issn.1006-3862.2013.03.022
    [2]
    钱七虎, 陈晓强. 国内外地下综合管线廊道发展的现状、问题及对策[J]. 地下空间与工程学报, 2007, 3(2): 191-194. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200702000.htm

    QIAN Qi-hu, CHEN Xiao-qiang. Situation problems and countermeasures of utility tunnel development in China and abroad[J]. Chinese Journal of Underground space and Engineering, 2007, 3(2): 191-194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200702000.htm
    [3]
    张士乔, 李洵, 吴小刚. 地基差异沉降时管道的纵向力学性状分析[J]. 中国农村水利水电, 2003(7): 46-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD200307020.htm

    ZHANG Shi-qiao, LI Xun, WU Xiao-gang. Analysis of longitudinal mechanical properties for pipeline during foundation uneven settlement[J]. China Rural Water and Hydropower, 2003(7): 46-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD200307020.htm
    [4]
    巨玉文, 吴际渊, 贺武斌, 等. 地面塌陷对城市地埋管线影响的试验研究及数值分析[J]. 太原理工大学学报, 2015, 46(1): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY201501014.htm

    JU Yu-wen, WU Ji-yuan, HE Wu-bin, et al. Experimental study and numerical analysis on influence of urban underground pipelines under the ground collapse[J]. Journal of Taiyuan University of Technology, 2015, 46(1): 64-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY201501014.htm
    [5]
    周敏, 杜延军, 王非, 等. 地层沉陷中埋地HDPE管道力学状态及模型试验分析[J]. 岩土工程学报, 2016, 38(2): 253-262. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602011.htm

    ZHOU Ming, DU Yan-jun, WANG Fei, et al. Physical modeling of mechanical responses of HDPE pipes and subsurface settlement caused by land subsidence[J]. Journal of Geotechnical Engineering, 2016, 38(2): 253-262. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602011.htm
    [6]
    WANG F, DU Y J, YANG X M. Physical modeling on ground responses to tunneling in sand considering the existence of HDPE pipes[J]. Geotechnical Testing Journal, 2015, 38(1): 85-97.
    [7]
    朱鸿鹄, 施斌, 严珺凡, 等. 基于分布式光纤应变感测的边坡模型试验研究[J]. 岩石力学与工程学报, 2013, 32(4): 821-828. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201304023.htm

    ZHU Hong-hu, SHI Bin, YAN Jun-fan, et al. Physical model testing of slope stability based on distributed fiber-optic strain sensing technology[J]. Journal of Rock Mechanics and Engineering, 2013, 32(4): 821-828. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201304023.htm
    [8]
    丁勇, 王平, 何宁, 等. 基于BOTDA光纤传感技术的SMW工法桩分布式测量研究[J]. 岩土工程学报, 2011, 33(5): 719-724. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105013.htm

    DING Yong, WANG Ping, HE Ning, et al. New method to measure deformation of SMW piles based on BOTDA[J]. Journal of Geotechnical Engineering, 2011, 33(5): 719-724. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105013.htm
    [9]
    魏广庆, 施斌, 胡盛, 等. FBG在隧道施工监测中的应用及关键问题探讨[J]. 岩土工程学报, 2009, 31(4): 571-576. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200904016.htm

    WEI Guang-qing, SHI Bin, HU Sheng, et al. Several key problems in tunnel construction monitoring with FBG[J]. Journal of Geotechnical Engineering, 2009, 31(4): 571-576. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200904016.htm
    [10]
    丁勇, 施斌, 崔何亮, 等. 光纤传感网络在边坡稳定监测中的应用研究[J]. 岩土工程学报, 2005, 27(3): 338-342. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC20050300J.htm

    DING Yong, SHI Bin, CUI He-liang, et al. A fiber optic sensing net applied in slope monitoring based on Brillouin scattering[J]. Journal of Geotechnical Engineering, 2005, 27(3): 338-342. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC20050300J.htm
    [11]
    吴海颖, 朱鸿鹄, 朱宝, 等. 基于分布式光纤传感的地下管线监测研究综述[J]. 浙江大学学报(工学版), 2019, 53(6): 1057-1070. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201906005.htm

    WU Hai-ying, ZHU Hong-hu, ZHU Bao, et al. Review of underground pipeline monitoring research based on distributed fiber optic sensing[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(6): 1057-1070. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201906005.htm
    [12]
    SIMPSON B, HOULTN A, MOORE I D. Distributed sensing of circumferential strain using fiber optics during full-scale buried pipe experiments[J]. Journal of Pipeline Systems Engineering and Practice, 2015(6): 1-10.
    [13]
    CAUCHI S, CHERPILLOD T, MORISON D, et al. Fiber-optic sensors for monitoring pipe bending due to ground movement[J]. Pipeline and Gas Journal, 2007(1): 36-40.
    [14]
    MOHAMAD H, SOGA K, BENNETT P J, et al. Monitoring twin tunnel interaction using distributed optical fiber strain measurements[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(8): 957-967.
    [15]
    KLAR A, VORSTER T E B, SOGA K, et al. Soil-pipe interaction due to tunnelling: comparison between Winkler and elastic continuum solutions[J]. Géotechnique, 2005, 55(6): 461-466.
  • Related Articles

    [1]LIU Cheng-yu, CHEN Bo-wen, LIN Wei, LUO Hong-lin. Prediction model for settlement caused by damage of underground pipelines and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 416-424. DOI: 10.11779/CJGE202103003
    [2]PAN Wei-qiang. Monitoring and analysis of ground settlement during pipe roof construction of pipe-jacking groups in soft soil areas[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 201-204. DOI: 10.11779/CJGE2019S1051
    [3]ZHANG Cheng-cheng, SHI Bin, ZHU Hong-hu, WEI Guang-qing. Theoretical analysis of mechanical coupling between soil and fiber optic strain sensing cable for distributed monitoring of ground settlement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1670-1678. DOI: 10.11779/CJGE201909011
    [4]LIN Cun-gang, XIA Tang-dai, LIANG Rong-zhu, WU Shi-ming. Estimation of shield tunnelling-induced ground surface settlements by virtual image technique[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1438-1446. DOI: 10.11779/CJGE201408009
    [5]REN Ying-nan, WANG Hong-qi, WANG Jian-hua. Settlement control of Qiantang River embankments during undercrossing of EPB shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 936-939.
    [6]LI Ying, HE Zhong-ze, YAN Gui-hua, LIAO Zhan-yu, LIANG Shu-ying. Excavation dewatering and ground subsidence in dual structural stratum of Wuhan[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 767-772.
    [7]Analysis of settlements caused by dewatering in Yishanlu metro station in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1961-1968.
    [8]Estimation of ground settlement aroused by deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1821-1828.
    [9]Analysis and prediction of Ground settlement induced by Subway Construction with Shield tunneling in Xi’an Loess strata[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [10]Study on influence of seepage of metro tunnels in soft soil on the settlements of tunnels and ground[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(2): 243-247.
  • Cited by

    Periodical cited type(21)

    1. 俞奎,章敏,秦文权,孙静雯,张开翔,宋利埼. 隧道穿越下埋地管线分布式光纤变形及脱空反演分析. 岩土力学. 2025(03): 894-904 .
    2. 张连贵,刘峰建,张鑫,郭广礼,李怀展,宫亚强. 采动影响下浅埋输油气管线变形监测与风险性评价方法及应用实践. 金属矿山. 2024(03): 183-189 .
    3. 刘奇,刘相林,曹广勇,赵金海,蒋长宝. 基于OFDR的采动覆岩铰接结构回转角度及“三带”变形表征研究. 煤炭科学技术. 2024(03): 63-73 .
    4. 喻文昭,朱鸿鹄,王德洋,谢天铖,裴华富,施斌. 荷载作用下砂土边坡-管道相互作用试验研究. 岩土力学. 2024(05): 1309-1320 .
    5. 崔萧. 基于DVS的地下管网及道路病害监测技术应用. 岩土工程技术. 2024(03): 322-329 .
    6. 庞文彬,郑鑫,葛亮,张凌云,张宁宁. 基于振动提取的沙漠埋地管道弯曲变形监测技术研究. 石油化工自动化. 2024(04): 66-70 .
    7. 李长山,迟帅. 基于时序InSAR遥感监测的中山市软土地面沉降特征及成因研究. 地质灾害与环境保护. 2024(04): 31-38 .
    8. 胡少伟,杨金辉. 大口径高性能聚氯乙烯管道研发与工程安全保障技术. 工程力学. 2023(01): 1-31 .
    9. 朱鸿鹄. 工程地质界面:从多元表征到演化机理. 地质科技通报. 2023(01): 1-19 .
    10. 史淞戈,施斌,刘苏平,张诚成,顾凯,何健辉. 钻孔回填料粒径对传感光缆应变耦合性影响研究. 岩土工程学报. 2023(01): 162-170 . 本站查看
    11. 卢毅,宋泽卓,刘瑾,卜凡,祁长青. 基于DFOS的通州湾地区地面沉降监测与变形分析. 河海大学学报(自然科学版). 2023(02): 81-88 .
    12. 喻文昭,朱鸿鹄,王德洋,李豪杰,叶霄. 埋地管道竖向隆起破坏研究综述. 防灾减灾工程学报. 2023(02): 189-200 .
    13. 张玉,梁昊,林亮,周游,赵青松. 不同沉降方式下埋地管道力学响应试验研究. 岩土力学. 2023(06): 1645-1656 .
    14. 魏祥龙,尹书冉,夏志康,杨涵苑,左利钦,林青炜. 软体排塌陷弯曲变形的应变响应特征分析. 水运工程. 2023(08): 90-95+138 .
    15. 魏祥龙,杨海亮,左利钦,陆永军,杨涵苑,袁赛瑜. 光纤传感监测护底软体排的可行性探讨. 水电能源科学. 2023(12): 147-151 .
    16. 张鑫,郭广礼,李怀展,张连贵,刘峰建,蒋乾,陈延康. 煤矿开采影响下浅埋输油管线变形及力学响应特性. 科学技术与工程. 2023(35): 15052-15059 .
    17. 韦超,朱鸿鹄,高宇新,王静,张巍,施斌. 地面塌陷分布式光纤感测模型试验研究. 岩土力学. 2022(09): 2443-2456 .
    18. 胡健,雒燕,刘瑾,魏世杰,何承宗,李明阳,张晨阳. 基于FBG机械连接部件微渗漏监测应用. 中国海洋平台. 2022(06): 28-34 .
    19. 施斌,朱鸿鹄,张丹,程刚. 从岩土体原位检测、探测、监测到感知. 工程地质学报. 2022(06): 1811-1818 .
    20. 刘保余,袁龙春,尚博,侯东,蒋勇,赵冰,张东. 长输油气埋地管道外检测技术研究. 管道技术与设备. 2021(03): 31-34 .
    21. 丁志国,龚占龙,盛智勇. FBG传感器在排水管道水位实时监测中的应用. 河北农机. 2021(07): 52-53 .

    Other cited types(7)

Catalog

    Article views (358) PDF downloads (195) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return