• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Cheng-shun, DOU Peng-fei, DU Xiu-li, CHEN Su, LI Xia. Dynamic response analysis of liquefied site-pile group foundation-structure system —large-scale shaking table model test[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2173-2181. DOI: 10.11779/CJGE201912001
Citation: XU Cheng-shun, DOU Peng-fei, DU Xiu-li, CHEN Su, LI Xia. Dynamic response analysis of liquefied site-pile group foundation-structure system —large-scale shaking table model test[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2173-2181. DOI: 10.11779/CJGE201912001

Dynamic response analysis of liquefied site-pile group foundation-structure system —large-scale shaking table model test

More Information
  • Received Date: April 07, 2018
  • Published Date: December 24, 2019
  • In this large-scale shaking table model test, the acceleration responses of soil and structures and pore water pressures and other signals are measured. The seismic responses of soil and pile group foundations, the development of pore water pressure of liquefiable soil are introduced, and the lateral deformation of soil is analyzed. The results show that when 0.05g beat wave is input, the acceleration responses of soil and pile foundation are enlarged obviously, and the pore pressure ratio increases stightly throughout the soil. Besides, the lateral displacements of soil are small. When 0.3g Wenchuan Earthquake seismic record is input, the law of acceleration response of pile foundation is basically the same as that of soil. The pore pressures rise rapidly and the soil has been liquefied, and lateral displacements of soil are large. The results of this paper are dynamic response of liquefied non-free site test in a series of large-scale shaking table tests on soil-pile group-superstructure system. The results can be used for comparative analysis and verification of numerical simulation in the future.
  • [1]
    程昌钧, 胡育佳, 朱媛媛, 等. 桩基的数学建模、理论分析与计算方法[M]. 北京: 科学出版社, 2009: 1-3.
    (CHENG Chang-jun, HU Yu-jia, ZHU Yuan-yuan, et al.Mathematical modeling, theoretical analysis and calculation method of pile foundation[M]. Beijing: Science Press, 2009: 1-3. (in Chinese))
    [2]
    LIYANAPATHIRANA D S, POULOS H G.Seismic lateral response of piles in liquefying soil[J]. J Geotech Geoenviron Eng, 2005, 131: 1466-1479.
    [3]
    LIYANAPATHIRANA D S, POULOS H G.Behavior of pile groups in liquefying soil[C]// Proceedings of GeoCongress 2006: Geotechnical Engineering in the Information Technology Age. Reston, Virginia, USA: ASCE Press, 2006: 1-6.
    [4]
    NOVAK M, EI SHARNOUBY B.Stiffness constants of single piles[J]. J Eng, 1983, 109(7): 961-974.
    [5]
    EL NAGGAR M H, NOVAK M. Nonlinear analysis for dynamic lateral pile response[J]. Soil Dynamics and Earthquake Engineering, 1996, 15(4): 233-244.
    [6]
    MATLOCK H.Correlation for design of lateral loaded piles in soft clay[C]// Proceedings of the 2nd Offshore Technology in Civil Engineering. Reston, Virginia, USA, 1970: 577-594.
    [7]
    REESE L C, COX W R, KOOP F D.Field testing and analysis of laterally loaded piles in stiff clay[C]// Proceedings of the 7th Offshore Technology in Civil Engineering. Reston, Virginia, USA, 1997: 245-256.
    [8]
    黄茂松, 吴志明, 任青, 等. 层状地基中群桩的水平振动特性[J]. 岩土工程学报, 2007, 29(1): 32-38.
    (HUANG Mao-song, WU Zhi-ming, REN Qing, et al.Lateral vibration of pile groups in layered soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 32-38. (in Chinese))
    [9]
    唐亮. 液化场地桩-土动力相互作用p-y曲线模型研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
    (TANG Liang.p-y model of dynamic pile-soil interaction in liquefying ground[D]. Harbin: Harbin Institute of Technology, 2010. (in Chinese))
    [10]
    HU Yu-jia, ZHU Yuan-yuan, CHENG Chang-jun, et al.EFGM for nonlinear mechanical behaviors of single pile and pile group[C]// Proceedings of the 5th International Conference on Nonlinear Mechanics. Shanghai: Shanghai University Press, 2007: 429-437.
    [11]
    王建华, 陆建飞. 层状地基中考虑固结和流变的垂直单桩的理论分析[J]. 水利学报, 2001, 32(4): 57-61.
    (WANG Jian-hua, LU Jian-fei.Theoretical study on single pile in layered saturated soil considering the consolidation and theology[J]. Journal of Hydraulic Engineering, 2001, 32(4): 57-61. (in Chinese))
    [12]
    MOTAMED R, TOWHATA I, HONDA T.Pile group response to liquefaction-induced lateral spreading: E-defense large shake table test[J]. Soil Dynamics and Earthquake Engineering, 2013, 51(3): 35-46.
    [13]
    TABATA K, SATO M.E-defense shaking table test on the behavior of liquefaction-induced lateral spreading of large-scale model ground with a pile-foundation structure behind quay wall[C]// International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 2010: 1-6.
    [14]
    MOTAMED R, TOWHATA I, HONDA T, et al.Behavior of pile group behind a sheet pile quay wall subjected to liquefaction-induced large ground deformation observed in shaking test in E-defense project[J]. Soils and Foundations, 2009, 49(3): 459-475.
    [15]
    MOTAMED R, TOWHATA I, TOWHATA I.Shaking table tests on pile groups behind quay wall model undergoing lateral spreading[J]. Journal of Geotechnical and Geoenvironmental Engineeirng, ASCE, 2010, 136(3): 477-489.
    [16]
    HAERI S M, KAVAND A, RAHMANI I, et al.Response of a group of piles to liquefaction-induced lateral spreading by large scale shake table testing[J]. Soil Dynamics and Earthquake Engineering, 2012, 38: 25-45.
    [17]
    吕西林, 陈跃庆, 陈波, 等. 结构-地基动力相互作用体系振动台模型试验研究[J]. 地震工程与工程振动, 2000, 20(4): 20-29.
    (LÜ Xi-lin, CHEN Yue-qing, CHEN Bo, et al.Shaking table testing of dynamic soil-structure interaction system[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(4): 20-29. (in Chinese))
    [18]
    LING Xian-zhang, GAO Xia, TANG Liang, et al.Effect of shaking intensity on interactive behavior of soil-pile group foundations in liquefiable soil during shaking table tests[C]// International Efforts in Lifeline Earthquake Engineering, 2013: 616-623.
    [19]
    TANG Liang, LING Xian-zhang, XU Peng-ju, et al.Shake table test of soil-pile groups-bridge structure interaction in liquefiable ground[J]. Earthquake Engineering and Engineering Vibration, 2010, 9(1): 39-50.
    [20]
    倪克闯. 成层土中桩基与复合地基地震作用下工作性状振动台试验研究[D]. 北京: 中国建筑科学研究院, 2013.
    (NI Ke-chuang.Shaking table test of pile and composite foundations’ dynamic behavior in layered soils subjected to earthquake excitation[D]. Beijing: China Academy of Building Research, 2013. (in Chinese))
    [21]
    BENNETT V, ZEGHAL M, ABDOUN T, et al.Wireless shape-acceleration array system for local identification of soil and soil structure systems[J]. Journal of the Transportation Research Board, 2007: 60-66.
  • Related Articles

    [1]SONG Chao, ZHAO Tengyuan, XU Ling. Estimation of uniaxial compressive strength based on fully Bayesian Gaussian process regression and model selection[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1664-1673. DOI: 10.11779/CJGE20220734
    [2]WANG Hai-lin, LIU Hang-yu, GU Xiao-qiang, SONG Xu-gen. Multi-parameter prediction of Zhuhai clay based on multivariate probability distribution model[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 193-196. DOI: 10.11779/CJGE2021S2046
    [3]KONG Xian-jing, SONG Lai-fu, XU Bin, ZOU De-gao. Correlation and distribution model for nonlinear strength parameters of rockfill based on Copula function[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 797-807. DOI: 10.11779/CJGE202005001
    [4]LIU Jun-ding, LI Rong-jian, SUN Ping, WANG Zhi-jun, LUO Jian-wen, LI Zhen-fei. Duncan-Chang nonlinear constitutive model based on joint strength theory of structural loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 124-128. DOI: 10.11779/CJGE2018S1020
    [5]JIANG Yan-bin, HE Ning, XU Bin-hua, ZHOU Yan-zhang, ZHANG Zhong-liu. Model tests on negative pressure distribution in vacuum preloading[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1874-1883. DOI: 10.11779/CJGE201710016
    [6]TANG Xiao-song, LI Dian-qing, ZHOU Chuang-bing, PHOON Kok-kwang. Reliability analysis of slopes with incomplete probability information[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1027-1034.
    [7]TANG Xiao-song, LI Dian-qing, ZHOU Chuang-bing, PHOON Kok-kwang. Modeling dependence between shear strength parameters using Copulas and its effect on slope reliability[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2284-2291.
    [8]CAO Wengui, MO Rui, LI Xiang. Study on statistical constitutive model and determination of parameters of rock based on normal distribution[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 671-675.
    [9]GONG Fengqiang, LI Xibing, DENG Jian. Probabilistic distribution of geotechnical parameters by using AHP prior distribution fusion method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1313-1318.
    [10]JIANG Hongying, MIAO Tiande, LU Jingbu. A probabilistic model for force transmission in two dimensional granular packs[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 881-885.
  • Cited by

    Periodical cited type(8)

    1. 杨威. 基于原位测试方法的土体变形参数研究. 安徽建筑. 2024(04): 141-143 .
    2. 黄献文,姚直书,蔡海兵,李凯奇,唐楚轩. 基于微观结构重塑的非饱和冻土导热系数预测. 岩土力学. 2023(01): 193-205 .
    3. 陈磊. 基于静力触探测试的深基坑工程土体设计参数应用研究. 广东建材. 2023(04): 72-75 .
    4. 张德,张泽超,张璐璐,张洁,曹子君. 场地有限数据条件下土体不排水抗剪强度的概率分布的贝叶斯估计研究. 岩土工程学报. 2023(06): 1259-1268 . 本站查看
    5. 曹阳健. 基于原位测试方法的土体变形参数研究. 砖瓦. 2023(06): 66-69 .
    6. 汪明元,张国,潘孙珏徐,陶袁钦. 基于集合卡尔曼滤波的海洋土孔隙率预测研究. 工业建筑. 2023(06): 37-42 .
    7. 黄献文,赵光明,黄顺杰,王泽洲,王雪松,唐楚轩. 基于堆积颗粒几何特征的多尺度渗透注浆扩散半径预测. 岩石力学与工程学报. 2023(08): 2028-2040 .
    8. 柯琪睿,李长冬,姚文敏,范一博,李炳辰. 干湿循环下侏罗系软弱夹层剪切特性与抗剪强度参数概率表征. 水利水电技术(中英文). 2023(11): 192-204 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return