• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG De, ZHANG Zechao, ZHANG Lulu, ZHANG Jie, CAO Zijun. Bayesian estimation of probability distributions of undrained shear strength of soils with limited site data[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1259-1268. DOI: 10.11779/CJGE20220299
Citation: ZHANG De, ZHANG Zechao, ZHANG Lulu, ZHANG Jie, CAO Zijun. Bayesian estimation of probability distributions of undrained shear strength of soils with limited site data[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1259-1268. DOI: 10.11779/CJGE20220299

Bayesian estimation of probability distributions of undrained shear strength of soils with limited site data

More Information
  • Received Date: March 20, 2022
  • Available Online: February 15, 2023
  • To address the issue of poor reliability of the design parameters due to limited or incomplete geotechnical investigation data, a cohesive soil parameter database containing 1679 sets of data from 141 sites is established. The site-specific Bayesian method (SBM) and the hierarchical Bayesian method (HBM) are used to estimate the probability distribution of undrained shear strength of cohesive soils by utilizing the data from a specific site and multiple sites, respectively. The results show that compared with the SBM method, the HBM method can effectively reduce the uncertainty of parameter estimation when there is only limited measured data at the target site, and it is less affected by the number of measuring points at the target site. The leave-one-out cross-validation (LOO-CV) combined with the log pointwise predictive density (lppd) is used to compare the accuracy of the two methods. The results show that the lppdloo-cv index of the HBM method is larger, indicating that the overall prediction accuracy of the HBM method is higher. Therefore, the HBM method is more suitable for the estimation of undrained shear strength parameters in the case of limited site data, and the posterior means obtained by the HBM method can be used for parameter estimation of new sites.
  • [1]
    李典庆, 吕天健, 唐小松. 基于多维Gaussian Copula的岩土体设计参数概率转换模型构建方法[J]. 岩土工程学报, 2021, 43(9): 1592-1601. doi: 10.11779/CJGE202109003

    LI Dianqing, LÜ Tianjian, TANG Xiaosong. Establishing probabilistic transformation models for geotechnical design parameters using multivariate Gaussian Copula[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1592-1601. (in Chinese) doi: 10.11779/CJGE202109003
    [2]
    张广文, 刘令瑶. 确定随机变量概率分布参数的推广Bayes法[J]. 岩土工程学报, 1995, 17(3): 91-94. http://www.cgejournal.com/cn/article/id/9873

    ZHANG Guangwen, LIU Lingyao. Extended Bayes method for determining probability distribution parameters of random variables[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(3): 91-94. (in Chinese) http://www.cgejournal.com/cn/article/id/9873
    [3]
    American Petroleum Institute. ANSI/API RECOMMENDED PRACTICE 2GEO Geotechnical and Foundation Design Considerations[M]. Washington: API Publishing Services, 2014.
    [4]
    LUMB P. The variability of natural soils[J]. Canadian Geotechnical Journal, 1966, 3(2): 74-97. doi: 10.1139/t66-009
    [5]
    LACASSE S, NADIM F. Uncertainties in characterising soil properties[C]//Uncertainty in the Geologic Environment: from Theory to Practice. New York, 1996.
    [6]
    宫凤强, 李夕兵, 邓建. 小样本岩土参数概率分布的正态信息扩散法推断[J]. 岩石力学与工程学报, 2006, 25(12): 2559-2564. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200612030.htm

    GONG Fengqiang, LI Xibing, DENG Jian. Probability distribution of small samples of geotechnical parameters using normal information spread method[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2559-2564. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200612030.htm
    [7]
    骆飞, 罗强, 蒋良潍, 等. 小样本岩土参数的Bootstrap估计及边坡稳定分析[J]. 岩石力学与工程学报, 2017, 36(2): 370-379. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201702009.htm

    LUO Fei, LUO Qiang, JIANG Liangwei, et al. Bootstrap estimation for geotechnical parameters of small samples and slope stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(2): 370-379. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201702009.htm
    [8]
    KULHAWY F H, MAYNE P W. Manual on Estimating Soil Properties for Foundation Design: EL-6800[R]. Palo Alto: Electric Power Research Institute, 1990.
    [9]
    PHOON K K, KULHAWY F H. Evaluation of geotechnical property variability[J]. Canadian Geotechnical Journal, 1999, 36(4): 625-639. doi: 10.1139/t99-039
    [10]
    MESRI G. Discussion of "New design procedure for stability of soft clays"[J]. Journal of the Geotechnical Engineering Division, 1975, 101(4): 409-412. doi: 10.1061/AJGEB6.0005026
    [11]
    MESRI G. A reevaluation of Su(mob) = 0.22σp using laboratory shear tests[J]. Canadian Geotechnical Journal, 1989, 26(1): 162-164. doi: 10.1139/t89-017
    [12]
    CHANDLER R J. The in-situ measurement of undrained shear strength of clays using the field vane[C]//Vane Shear Strength Testing in Soils: Field and Laboratory Studies (ASTM STP 1014). Baltimore, 1988.
    [13]
    CAO Z J, WANG Y. Bayesian model comparison and characterization of undrained shear strength[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(6): 04014018. doi: 10.1061/(ASCE)GT.1943-5606.0001108
    [14]
    CHING J, PHOON K K, LI K H, et al. Multivariate probability distribution for some intact rock properties[J]. Canadian Geotechnical Journal, 2019, 56(8): 1080-1097. doi: 10.1139/cgj-2018-0175
    [15]
    TANG X S, LI D Q, RONG G, et al. Impact of copula selection on geotechnical reliability under incomplete probability information[J]. Computers and Geotechnics, 2013, 49: 264-278. doi: 10.1016/j.compgeo.2012.12.002
    [16]
    汪海林, 刘航宇, 顾晓强, 等. 基于多元概率分布模型的珠海黏土多参数预测[J]. 岩土工程学报, 2021, 43(增刊2): 193-196. doi: 10.11779/CJGE2021S2046

    WANG Hailin, LIU Hangyu, GU Xiaoqiang, et al. Multi-parameter prediction of Zhuhai clay based on multivariate probability distribution model[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 193-196. (in Chinese) doi: 10.11779/CJGE2021S2046
    [17]
    BOZORGZADEH N, HARRISON J P, ESCOBAR M D. Hierarchical Bayesian modelling of geotechnical data: application to rock strength[J]. Géotechnique, 2019, 69(12): 1056-1070. doi: 10.1680/jgeot.17.P.282
    [18]
    XIAO S H, ZHANG J, YE J M, et al. Establishing region-specific NVs relationships through hierarchical Bayesian modeling[J]. Engineering Geology, 2021, 287: 106105. http://www.sciencedirect.com/science/article/pii/S0013795221001162
    [19]
    CHING J, PHOON K K. Constructing site-specific multivariate probability distribution model using Bayesian machine learning[J]. Journal of Engineering Mechanics, 2019, 145(1): 04018126. http://www.onacademic.com/detail/journal_1000040914564910_437a.html
    [20]
    CHING J, PHOON K K. Correlations among some clay parameters—the multivariate distribution[J]. Canadian Geotechnical Journal, 2014, 51(6): 686-704. http://www.researchgate.net/profile/Jianye_Ching/publication/262924656_Correlations_among_some_clay_parameters_-_The_multivariate_distribution/links/5476bda20cf29afed6142525.pdf
    [21]
    CHING J, WU S, PHOON K K. Constructing quasi-site-specific multivariate probability distribution using hierarchical Bayesian model[J]. Journal of Engineering Mechanics, 2021, 147(10): 04021069. http://doc.paperpass.com/foreign/rgArti2021163572020.html
    [22]
    GELMAN A, CARLIN J B, STERN H S, et al. Bayesian Data Analysis[M]. 3rd ed. New York: Chapman and Hall/CRC, 2013.
    [23]
    CHING J, PHOON K K. Transformations and correlations among some clay parameters—the global database[J]. Canadian Geotechnical Journal, 2014, 51(6): 663-685. http://doc.paperpass.com/foreign/rgArti2014154070750.html
    [24]
    WU X Z. Quantifying the non-normality of shear strength of geomaterials[J]. European Journal of Environmental and Civil Engineering, 2020, 24(6): 740-766. http://www.researchgate.net/profile/Xing_Wu12/publication/322198352_Quantifying_the_non-normality_of_shear_strength_of_geomaterials/links/5a5f6c700f7e9b964a1cbe84/Quantifying-the-non-normality-of-shear-strength-of-geomaterials.pdf
    [25]
    TANG X S, WANG J P, YANG W, et al. Joint probability modeling for two debris-flow variables: copula approach[J]. Natural Hazards Review, 2018, 19(2) 05018004. http://smartsearch.nstl.gov.cn/paper_detail.html?id=28c2a8479af5c13c9ae131f6483b146c
    [26]
    CAO Z J, WANG Y, LI D Q. Quantification of prior knowledge in geotechnical site characterization[J]. Engineering Geology, 2016, 203: 107-116.
    [27]
    LUNN D, JACKSON C, BEST N, et al. The BUGS Book: A Practical Introduction to Bayesian Analysis[M]. 1st ed. Chapman and Hall/CRC, 2012.
    [28]
    BOZORGZADEH N, BATHURST R J. Hierarchical Bayesian approaches to statistical modelling of geotechnical data[J]. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2022, 16(3): 452-469. doi: 10.1080/17499518.2020.1864411
  • Cited by

    Periodical cited type(22)

    1. 谢朋,李葱葱,段虎辰,文海家,李良勇,李昭捷,王永卫. 隧道围岩透明相似材料强度特征与配合比研究. 湖南大学学报(自然科学版). 2025(01): 219-227 .
    2. 钱伟丰,黄明,曾子圣,王禹,胡艳峰. 双向起伏地表浅埋盾构隧道开挖面三维被动失稳极限支护压力上限解. 应用基础与工程科学学报. 2025(01): 273-288 .
    3. 应宏伟,吕忠泽. 考虑刀土摩擦的砂土盾构隧道开挖面支护压力计算方法. 中南大学学报(自然科学版). 2024(03): 1082-1091 .
    4. 夏俊偉. 砂卵石地层中地铁盾构隧道开挖面稳定性离散元数值模拟研究. 铁道勘察. 2024(02): 140-146 .
    5. 施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 .
    6. 张子新,李小昌,李佳宇. 软土地层盾构掘进土体稳定性模型试验研究. 土木与环境工程学报(中英文). 2024(03): 41-51 .
    7. 刘功明,黄建坤,杜金阳,张健. 适用于植物生长的透明土制备及其性能试验. 农业工程学报. 2024(15): 76-84 .
    8. 何晟亚,李亮,李恒一,张建经,叶亮,文海家,段虎辰,谢朋. 可视化软土隧道模型试验相似材料的配置及其物理力学特性研究. 现代隧道技术. 2024(04): 202-209 .
    9. 刘维正,师嘉文,谭际鸣,董军,豆小天. 水位变化下浅埋盾构隧道开挖面渗透力与稳定性研究. 中南大学学报(自然科学版). 2024(10): 3833-3848 .
    10. 张耀星,梁连,黄明. 盾构隧道与箱涵交叠下穿铁路开挖面稳定性上限分析. 公路工程. 2024(06): 64-71 .
    11. 卜璟,王琛. 基于透明土试验技术的盾构侧穿桩基影响机制研究. 江苏建筑. 2023(02): 67-72 .
    12. 雷华阳,刘敏,钟海晨,许英刚,袁大军. 黏土地层盾构隧道开挖面失稳离心试验及数值模拟. 天津大学学报(自然科学与工程技术版). 2023(05): 503-512 .
    13. 苏占东,周思哲,王成虎,孙进忠,曾扬农,张建勇,张明磊,王磊,朱卓辉,李小瑞. 工程岩体物理模拟研究中实验材料的选择与应用. 地质论评. 2023(03): 1133-1149 .
    14. 谢丽辉,丁军军. 上软下硬地层盾构隧道开挖面稳定性数值模拟研究. 城市道桥与防洪. 2023(05): 195-199+24-25 .
    15. 李同海. 考虑断层边界影响的盾构掘进安全距离界定方法. 福建交通科技. 2023(04): 60-64 .
    16. 汪联欢. 消力池开挖施工对临近泄洪洞安全性的影响. 水利科学与寒区工程. 2023(11): 133-137 .
    17. 雷华阳,刘敏,程泽宇,钟海晨. 透明黏土盾构隧道开挖面失稳扩展过程和失稳特征研究. 岩石力学与工程学报. 2022(06): 1235-1245 .
    18. 王均山,衣凡,连文博,张建铭,何志伟,谢育杨,仲志武,程雪松. 软土地区地铁盾构隧道引发地表沉陷实例研究. 建筑结构. 2022(S1): 2871-2877 .
    19. 吕玺琳,赵庾成,曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验. 隧道与地下工程灾害防治. 2022(03): 67-76 .
    20. 赵辰洋,罗毛毛,邱静怡,倪芃芃,赵锋烽. 盾构隧道施工引起地层变形预测方法综述. 隧道与地下工程灾害防治. 2022(03): 31-46 .
    21. 卢谅,何兵,肖亮,王宗建,马书文,林浩鑫. 基于透明土的成层土中CPT贯入试验研究. 岩土工程学报. 2022(12): 2215-2224 . 本站查看
    22. 刘朝钦. 软弱地层超大矩形顶管盾构隧道开挖面稳定性研究. 高速铁路技术. 2022(06): 36-40 .

    Other cited types(23)

Catalog

    Article views (327) PDF downloads (93) Cited by(45)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return