• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Er-lu, ZHU Jun-gao, GUO Wan-li, CHEN Ge. Experimental study on effect of scaling on compact density of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1767-1772. DOI: 10.11779/CJGE201909023
Citation: WU Er-lu, ZHU Jun-gao, GUO Wan-li, CHEN Ge. Experimental study on effect of scaling on compact density of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1767-1772. DOI: 10.11779/CJGE201909023

Experimental study on effect of scaling on compact density of coarse-grained soils

More Information
  • Received Date: December 28, 2018
  • Published Date: September 24, 2019
  • There is a certain difference in compact density of rockfill materials between the real gradation and corresponding scaling gradation. In order to describe the difference quantitatively, the scaling effect can be divided into two parts, changes of the maximum particle size and the gradation structure. With the mentality that the continuous gradation is combined with the similar gradation method, many gradations of rockfill materials are designed, and their maximum particle sizes are 60, 40, 20 mm. The surface vibration compaction tests are conducted to study the effects of the maximum particle size and gradation structure on the compact density of rockfill materials respectively. The effects of the maximum particle size and gradation structure on the compact density can be described quantitatively by using the proposed function form. The prediction model for the compact density of rockfill materials is proposed, which considers the effects of the maximum particle size and gradation structure, the applicability of different rockfill materials is discussed, and the accuracy of this model is verified through a number of laboratory compaction test data. In addition, a way for quantitatively studying the scaling effect of rockfill materials is proposed.
  • [1]
    郭庆国. 粗粒土的工程特性及应用[M]. 北京: 中国水利水电出版社, 2003.
    (GUO Qing-guo.Engineering properties and application of coarse-grained soil[M]. Beijing: China Water Power Press, 2003. (in Chinese))
    [2]
    MARACHI N D, CHAN C K, SEED H B.Evaluation of properties of rockfill mechanicals[J]. Journal of Soil Mechanics and Foundations Division, ASCE, 1972, 98(1): 95-114.
    [3]
    翁厚洋, 朱俊高, 余挺, 等. 粗粒料缩尺效应研究现状与趋势[J]. 河海大学学报(自然科学版), 2009, 37(4): 425-429.
    (WEN Hou-yang, ZHU Jun-gao, YU Ting, et al.Status and tendency of study on scale effects of coarse-grained materials[J]. Journal of HoHai University (Natural Sciences), 2009, 37(4): 425-429. (in Chinese)).
    [4]
    杨贵, 刘汉龙, 陈育民, 等. 粗粒料动力变形特性的尺寸效应研究[J]. 水力水电学报, 2009, 28(5): 122-126.
    (YANG Gui, LIU Han-long, CHEN Yu-min, et al.Research on size effect of rockfill materials on dynamic deformation property[J]. Journal of Hydroelectric Engineering, 2009, 28(5): 122-126. (in Chinese))
    [5]
    花俊杰, 周伟, 常晓林, 等. 堆石体应力变形的尺寸效应研究[J]. 岩石力学与工程学报, 2010, 29(2): 328-335.
    (HUA Jun-jie, ZHOU Wei, CHANG Xiao-lin, et al.Study of scale effect on stress and deformation of rockfill[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 328-335. (in Chinese))
    [6]
    郦能惠, 朱铁, 米占宽. 小浪底坝过渡料的强度与变形特性及缩尺效应[J]. 水电能源科学, 2001, 19(2): 39-42.
    (LI Neng-hui, ZHU Tie, MI Zhan-kuan.Strength and deformation properties of transition zone material of Xiaolangdi dam and scale effect[J]. Water Resources and Power, 2001, 19(2): 40-43. (in Chinese))
    [7]
    赵娜, 左永振, 王占彬, 等. 基于分形理论的粗粒料级配缩尺方法研究[J]. 岩土力学, 2016, 37(12): 3513-3519.
    (ZHAO Na, ZUO Yong-zhen, WANG Zhan-bin, et al.Grading scale method for coarse-grained soils based on fractal theory[J]. Rock and Soil Mechanics, 2016, 37(12): 3513-3519. (in Chinese))
    [8]
    傅华, 韩华强, 凌华. 粗粒料级配缩尺方法对其室内试验结果的影响[J]. 岩土力学, 2012, 33(9): 2645-2649.
    (FU Hua, HAN Hua-qiang, LING Hua.Effect of grading scale method on results of laboratory tests on rockfill materials[J]. Rock and Soil Mechanics, 2012, 33(9): 2645-2649. (in Chinese))
    [9]
    翁厚洋, 景卫华, 李永红, 等. 粗粒料缩尺效应影响因素分析[J]. 水资源与水工程学报, 2009, 20(3): 25-29.
    (WENG Hou-yang, JING Wei-hua, LI Yong-hong, et al.Analysis on the impact factor of scale effect by coarse-grained materials[J]. Journal of Water Resources & Water Engineering, 2009, 20(3): 25-29. (in Chinese))
    [10]
    朱俊高, 翁厚洋, 吴晓铭, 等. 粗粒料级配缩尺后压实密度试验研究[J]. 岩土力学, 2010, 31(8): 2394-2398.
    (ZHU Jun-gao, WENG Hou-yang, WU Xiao-ming, et al.Experimental study of compact density of scaled coarse-grained soil[J]. Rock and Soil Mechanics, 2010, 31(8): 2394-2398. (in Chinese))
    [11]
    SL237—1999土工试验规程[S]. 1999. (SL237—1999 Specification of soil test[S]. 1999. (in Chinese))
    [12]
    ZHU J G, GUO W L, WEN Y F, et al.New gradation equation and applicability for particle-size distributions of various soils[J]. International Journal of Geomechanics, 2018, 18(2): 04017155.
    [13]
    郭万里, 朱俊高, 余挺, 等. 土的连续级配方程在粗粒料中的应用研究[J]. 岩土力学, 2018, 39(10): 1-7.
    (GUO Wan-li, ZHU Jun-gao, YU Ting, et al.Study on the application of gradation equation for coarse-grained soil[J], Rock and Soil Mechanics, 2018, 39(10): 1-7. (in Chinese))
    [14]
    史彦文. 大粒径砂卵石最大密度的研究[J]. 土木工程学报, 1981, 14(2): 53-58.
    (SHI Yan-wen.Study on the maximum density of large sized sandy gravels[J]. China Civil Engineering Journal, 1981, 14(2): 53-58. (in Chinese))
    [15]
    冯冠庆, 杨荫华. 堆石料最大指标密度室内试验方法的研究[J]. 岩土工程学报, 1992, 14(5): 37-45.
    (FENG Guan-qing, YANG Yin-hua.Study on laboratory experimental ways of the maximum density of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(5): 37-45. (in Chinese))
    [16]
    日本土质工学会. 粗粒料的现场压实[M]. 北京: 中国水利水电出版社, 1999.
    (The Japanese Geotechnical Engineering Association. Field compaction of coarse-grained soil[M]. Beijing: China Water Power Press, 1999. (in Chinese))
  • Related Articles

    [1]JIA Yufeng, FENG Wenquan, CHI Shichun. Dynamic optimization method for statistics of dry density of earth-rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2521-2528. DOI: 10.11779/CJGE20230824
    [2]JIANG Mingjie, JI Enyue, WANG Tiancheng, LI Shuya, ZHU Jungao, MEI Guoxiong. Experimental study on laws of scale effects of shear strength of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 855-861. DOI: 10.11779/CJGE20220102
    [3]ZHU Sheng, YE Hua-yang, XU Jin, FENG Shu-rong. Research and application of relative density test method for large coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1087-1095. DOI: 10.11779/CJGE202206013
    [4]YU Ji-du, LIU Si-hong, WANG Tao, WEI Hao. Experimental research on compaction characteristics of gap-graded coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2142-2148. DOI: 10.11779/CJGE201911021
    [5]ZHU Sheng. Gradation equation and compaction characteristics of continuously distributed coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1899-1906. DOI: 10.11779/CJGE201910014
    [6]LI Shan-shan, LI Da-yong, GAO Yu-feng. Determination of maximum and minimum void ratios of sands and their influence factors[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 554-561. DOI: 10.11779/CJGE201803021
    [7]ZHU Sheng, ZHONG Chun-xin, ZHENG Xi-lei, GAO Zhuang-pin, ZHAN Zhen-gang. Filling standards and gradation optimization of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 108-115. DOI: 10.11779/CJGE201801010
    [8]ZHU Sheng, DENG Shi-de, NING Zhi-yuan, WANG Jing. Gradation design method for rockfill materials based on fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1151-1155. DOI: 10.11779/CJGE201706023
    [9]CAI Zheng-yin, LI Xiao-mei, HAN Lin, GUAN Yun-fei. Critical state of rockfill materials considering particle gradation and breakage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1357-1364. DOI: 10.11779/CJGE201608001
    [10]Tian Shuyu. Determining the Max. Dry Density of Coarse Grained Sandy Gravels by the Method of Curve- Fitting with Asymptotic Line[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(1): 35-43.
  • Cited by

    Periodical cited type(16)

    1. 蒋明杰,石竣允,栗书亚,胡荣峰,梅国雄. 级配对粗粒土-格栅界面循环剪切特性影响试验研究. 水利水电技术(中英文). 2024(03): 162-172 .
    2. 褚福永,朱俊高,许凯,翁厚洋. 基于连续级配方程的粗粒料压实密度缩尺效应试验研究. 水利水电科技进展. 2024(03): 34-38 .
    3. 谢康,陈晓斌,肖宪普,李泰灃,张千里,尧俊凯. 高速铁路路基填料智能振动压实系统研制与试验研究. 铁道学报. 2024(06): 138-147 .
    4. 赵桂锋,蒋明杰,张振,王天成,梅国雄. 粗粒土缩尺级配的渗透系数规律试验. 工程科学与技术. 2024(05): 240-246 .
    5. 蒋明杰,朱俊高,张小勇,梅国雄,赵辰洋. 缩尺效应对粗颗粒土静止侧压力系数影响规律试验. 工程科学与技术. 2023(02): 259-266 .
    6. 蒋明杰,吉恩跃,王天成,栗书亚,朱俊高,梅国雄. 粗粒土抗剪强度的缩尺效应规律试验研究. 岩土工程学报. 2023(04): 855-861 . 本站查看
    7. 谢康,陈晓斌,尧俊凯,蔡德钩. 高铁路基填料振动压实试验参数标准化方法与应用研究. 岩石力学与工程学报. 2023(07): 1799-1810 .
    8. 沈超敏,邓刚,刘斯宏,严俊,毛航宇,王柳江. 基于颗粒堆积算法的堆石料压实密度预测研究. 水利学报. 2023(08): 920-929 .
    9. 杨孝攀,李江,杨玉生,齐吉琳,李康达. 典型工程筑坝砂砾料级配特征与压实特性研究. 岩土力学. 2022(06): 1607-1616 .
    10. 梁传扬,吴跃东,刘坚,刘辉,陈大硕,林来贺. 钙质结核含量对钙质结核土压缩性缩尺效应影响研究. 岩土工程学报. 2022(12): 2272-2279 . 本站查看
    11. 罗奇志,袁朝阳,韩雪刚,罗彪. 土石混填体缩尺效应研究现状与发展趋势. 市政技术. 2021(08): 198-201 .
    12. 朱智勇,张丹瑜,寿平山,黄曼,朱申良,张益辉. 不同颗粒粒径的松散沉积物抗剪强度试验研究. 科技通报. 2021(12): 76-82 .
    13. 张村,赵毅鑫,屠世浩,张通. 采空区破碎煤岩样压实再次破碎特征的数值模拟研究. 岩土工程学报. 2020(04): 696-704 . 本站查看
    14. 吴二鲁,朱俊高,陈鸽,包孟碟,郭万里. 粗粒料的级配方程及其适用性研究(英文). Journal of Central South University. 2020(03): 911-919 .
    15. 崔家全,段军邦,马凌云,张路. 茨哈峡水电站砂砾石填筑料水平渗透变形特性试验研究. 西北水电. 2020(S2): 103-107 .
    16. 张村,赵毅鑫,屠世浩,郝宪杰,郝定溢,刘金保,任赵鹏. 颗粒粒径对采空区破碎煤体压实破碎特征影响机制. 煤炭学报. 2020(S2): 660-670 .

    Other cited types(12)

Catalog

    Article views (249) PDF downloads (160) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return