• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHU Sheng, YE Hua-yang, XU Jin, FENG Shu-rong. Research and application of relative density test method for large coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1087-1095. DOI: 10.11779/CJGE202206013
Citation: ZHU Sheng, YE Hua-yang, XU Jin, FENG Shu-rong. Research and application of relative density test method for large coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1087-1095. DOI: 10.11779/CJGE202206013

Research and application of relative density test method for large coarse-grained soil

More Information
  • Received Date: July 18, 2021
  • Available Online: September 22, 2022
  • Based on the design filling gradation of rockfill materials for Lawa super-high face dam, the main factors affecting the test accuracy of large density barrel are studied by means of numerical and field tests. The double-control index of rockfill porosity and relative density is proposed, and its applicability is verified by the results of rolling tests. The results show that: (1) For the field density barrel tests on the coarse-grained soil with a large particle size, which is difficult to be fully mixed, the method of artificial layering can effectively reduce the discreteness of the test results. (2) The selection of container size has a great influence on the test results, and too large size will bring higher test cost, even difficult to implement, while too small size will bring obvious container boundary size effect. Considering the actual situation in the field, the size effect of the test results is relatively small when the density barrel test size meets the minimum 'diameter to diameter ratio' and the 'height to diameter ratio' is about 4.0 and 2.0, respectively. (3) With the increase of the maximum particle size, the extreme dry density of density barrel tests shows an increasing trend. However, when the maximum particle size reaches 400 mm, the extreme dry density is basically stable. The test results can be used as the basis for compaction design and filling quality control. (4) The porosity is not higher than 19% and the relative density is not less than 0.75. The requirements can be met by using 32T vibration rolling 12 times. (5) For the soil with a large particle size with horizontal layered compaction, the ratio of the thickness of compaction layer to the maximum particle size can be appropriately increased, which can achieve better compaction efficiency. It is an optimal compaction scheme for rockfill materials to take a loose paving layer with a thickness of about 1.0 m and a maximum particle size of 400~600 mm. The research results can be directly applied to the compaction design and evaluation of coarse-grained soil with large particle size, which has a great application value.
  • [1]
    Field and Laboratory Determination of Maximum Density in Coarse Sands and Gravels for Mica Dam: ASTM STP523—1973[S]. 1973.
    [2]
    史彦文. 大粒径砂卵石最大密度的研究[J]. 土木工程学报, 1981, 14(2): 53–58. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC198102005.htm

    SHI Yan-wen. A study on maximum density of large sized sandy gravels[J]. China Civil Engineering Journal, 1981, 14(2): 53–58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC198102005.htm
    [3]
    朱晟, 钟春欣, 王京, 等. 高心墙堆石坝填筑标准的试验研究[J]. 岩土工程学报, 2019, 41(3): 561–566. doi: 10.11779/CJGE201903019

    ZHU Sheng, ZHONG Chun-xin, WANG Jing, et al. Experimental study on filling standard of high rockfill dams with soil core[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 561–566. (in Chinese) doi: 10.11779/CJGE201903019
    [4]
    Relative Density Tests on Rock Fill at Carters Dam: ASTM STP523—1972[S]. 1972.
    [5]
    BERTRAM G E. Field tests for compacted rockfill[M]//Embankment Dam Engineering. New York: John Wiley & Sons Inc, 1973.
    [6]
    Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using A Vibratory Table : ASTM D4253-2016. [S]. 2016.
    [7]
    冯冠庆, 杨荫华. 堆石料最大指标密度室内试验方法的研究[J]. 岩土工程学报, 1992, 14(5): 37–45. doi: 10.3321/j.issn:1000-4548.1992.05.005

    FENG Quan-qing, YANG Yin-hua. Laboratory test methods for maximum index density of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(5): 37–45. (in Chinese) doi: 10.3321/j.issn:1000-4548.1992.05.005
    [8]
    朱晟, 王京, 钟春欣, 等. 堆石料干密度缩尺效应与制样标准研究[J]. 岩石力学与工程学报, 2019, 38(5): 1073–1080. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201905021.htm

    ZHU Sheng, WANG Jing, ZHONG Chun-xin et al. Experimental study on scale effect of the dry density of rockfill material[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(5): 1073–1080. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201905021.htm
    [9]
    田堪良, 张慧莉, 张伯平, 等. 超径无粘性粗粒土填筑标准的确定方法[J]. 西北农林科技大学学报(自然科学版), 2002, 30(6): 193–197. doi: 10.3321/j.issn:1671-9387.2002.06.047

    SHI Xin-ling, CHEN Meng-hua, LIU Yun-peng. The combined circuit device of transducer and amplifier in water-measuring meter[J]. Journal of Northwest A & F University (Natural Science Edition), 2002, 30(6): 193–197. (in Chinese) doi: 10.3321/j.issn:1671-9387.2002.06.047
    [10]
    土石筑坝材料碾压试验规程: NB/T 35016—2013[S]. 2013.

    Testing Specification on Material Compaction for Earth and Rock-Fill Dams: NB/T 35016—2013[S]. 2013. (in Chinese)
    [11]
    水电水利工程砂砾石料压实质量密度桶法检测技术规程: T/CEC 5001—2016[S]. 2016.

    Testing Technical Specification on Sand-Gravel Compaction Quality Test With Density Bucket Method for Hydropower Engineering: T/CEC 5001—2016[S]. 2016. (in Chinese)
    [12]
    王龙, 李彦坡, 王志坚, 等. 阿尔塔什水利枢纽混凝土面板堆石坝筑坝砂砾料相对密度试验及工程应用[J]. 水利水电技术, 2018, 49(增刊1): 21–26. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ2018S1004.htm

    WANG Long, LI Yan-po, WANG Zhi-jian, et al. Experiment on relative density of sand-gravel material for construction of concrete face rockfill dam for Altash Water Control Project and its engineering application[J]. Water Resources and Hydropower Engineering, 2018, 49(S1): 21–26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ2018S1004.htm
    [13]
    张正勇, 包永侠, 唐德胜. 阿尔塔什大坝堆石料相对密度研究和施工应用[J]. 水力发电, 2018, 44(2): 40–42, 51. doi: 10.3969/j.issn.0559-9342.2018.02.011

    ZHANG Zheng-yong, BAO Yong-xia, TANG De-sheng. Study on relative density of rockfill material in aertashi dam and its application in dam construction[J]. Water Power, 2018, 44(2): 40–42, 51. (in Chinese) doi: 10.3969/j.issn.0559-9342.2018.02.011
    [14]
    蔡加兴, 方德扬. 堆石料相对密度控制法试验及检测方法应用研究[J]. 人民长江, 2019, 50(12): 136–141. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201912025.htm

    CAl Jia-xing FANG De-yang. Controlling method of rockfill relative density and its detection method[J]. Yangtze River, 2019, 50(12): 136–141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201912025.htm
    [15]
    朱晟. 高面板坝堆石体的填筑质量控制指标研究与应用[J]. 岩土工程学报, 2020, 42(4): 610–615. doi: 10.11779/CJGE202004002

    ZHU Sheng. Study and application of control indices for filling quality of high concrete face rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 610–615. (in Chinese) doi: 10.11779/CJGE202004002
    [16]
    ZHOU B, HUANG R Q, WANG H B, et al. DEM investigation of particle anti-rotation effects on the micromechanical response of granular materials[J]. Granular Matter, 2013, 15(3): 315–326. doi: 10.1007/s10035-013-0409-9
    [17]
    WENSRICH C M, KATTERFELD A. Rolling friction as a technique for modelling particle shape in DEM[J]. Powder Technology, 2012, 217: 409–417.
    [18]
    Itasca Consulting Group Inc. Particle Flow Code in 3 Dimensions. User's Guide[R]. 1999.
    [19]
    AI J, CHEN J F, ROTTER J M, et al. Assessment of rolling resistance models in discrete element simulations[J]. Powder Technology, 2011, 206(3): 269–282.
    [20]
    张宜, 周伟, 马刚, 等. 细颗粒截断粒径对堆石体力学特性影响的数值模拟[J]. 武汉大学学报(工学版), 2017, 50(3): 332–339. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201703003.htm

    ZHANG Yi, ZHOU Wei, MA Gang, et al. Effect of minimum particle size on mechanical properties of rockfill materials by numerical simulation[J]. Engineering Journal of Wuhan University, 2017, 50(3): 332–339. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201703003.htm
    [21]
    朱晟, 张露澄. 连续分布超径粗粒土的级配缩尺方法与适用条件[J]. 岩石力学与工程学报, 2019, 38(9): 1895–1904. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201909017.htm

    ZHU Sheng, ZHANG Lu-cheng. A gradation scale method for continuously distributing super-diameter coarse-grained soils and its application conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(9): 1895–1904. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201909017.htm
    [22]
    ICOLD. Concrete Face Rockfill Dams: Concepts for Design and Construction, Bulletin 141[R]. 2010.
    [23]
    朱晟, 卢知是, 刘纯, 等. 堆石体现场振动压实试验研究与应用[J]. 岩土力学, 2021, 42(9): 2569–2577. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202109025.htm

    ZHU Sheng, LU Zhi-shi, LIU Chun, et al. Field vibration compaction test of rockfill and its application[J]. Rock and Soil Mechanics, 2021, 42(9): 2569–2577. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202109025.htm
  • Related Articles

    [1]JIA Yufeng, FENG Wenquan, CHI Shichun. Dynamic optimization method for statistics of dry density of earth-rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2521-2528. DOI: 10.11779/CJGE20230824
    [2]GU Yingdong, CHENG Qing, TANG Chaosheng, SHI Bin. Desiccation cracking behavior of vegetated soil with various dry densities[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2420-2428. DOI: 10.11779/CJGE20221037
    [3]ZHANG Lin, LI Tong-lu, CHEN Cun-li. Soil-water characteristics and permeability of compacted loess considering effects of dry density[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 945-953. DOI: 10.11779/CJGE202205018
    [4]LIU Jie, SUN Meng-ya, SHI Bin, WEI Guang-qing, GUO Jun-yi, ZHENG Xing. Feasibility study on actively heated FBG methods for dry density measurement[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 390-396. DOI: 10.11779/CJGE202102020
    [5]LU Yi-wei, CHENG Zhan-lin, PAN Jia-jun, JIANG Ji-wei, XU Han. Equivalent density determination method for dam rockfill materials in mechanical tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 75-79. DOI: 10.11779/CJGE2020S1015
    [6]WU Er-lu, ZHU Jun-gao, GUO Wan-li, CHEN Ge. Experimental study on effect of scaling on compact density of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1767-1772. DOI: 10.11779/CJGE201909023
    [7]CAI Guo-qing, ZHANG Ce, LI Jian, ZHAO Cheng-gang. Prediction method for SWCC considering initial dry density[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 27-31. DOI: 10.11779/CJGE2018S2006
    [8]MA Ya-wei, CHEN Wen-wu, BI Jun, GUO Gui-hong, JIAO Gui-de. Influence of dry density on coefficient of permeability of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 165-170. DOI: 10.11779/CJGE2018S1027
    [9]LIU Hongjun, Lv Wenfang, YANG, Jujie. Influence of initial dry density and clay content on steady state strength of silty soil in Yellow River Delta[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1287-1291.
    [10]YAN Lingrui, MENG Junsheng, YIN Xiaotao. Effect of loose dry density on process of quality control of lime-soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 2043-2046.
  • Cited by

    Periodical cited type(16)

    1. 郭冬冬,朱怀龙,刘俊杰,王志安. 薄膜压力传感器在液压振动沉桩试验中的应用. 广东建材. 2024(03): 77-80 .
    2. 栾兆群,白鹏,王海永. 一种新型振弦式土压力盒的结构设计分析. 现代制造技术与装备. 2024(05): 45-47 .
    3. 王永志,杨阳,徐光明,汤兆光,张雪东,孙锐,周燕国. 岩土离心模型试验软接触式微型土压计研制及性能评价. 岩土工程学报. 2024(08): 1655-1664 . 本站查看
    4. 潘文雅,陈宏同,周良绩. 高空作业防坠器防坠制动状态监测与预警方法. 机械制造与自动化. 2024(06): 185-189 .
    5. 朱怀龙,黄春梅. 薄膜压力传感器在打桩试验中的标定研究. 铁道建筑技术. 2023(05): 17-20 .
    6. 贾科敏,许成顺,杜修力,张小玲,崔春义. 液化侧向扩展场地-群桩基础-结构体系地震破坏反应大型振动台试验方案设计. 工程力学. 2023(07): 121-136 .
    7. 黄大维,彩国庆,徐长节,罗文俊,胡光静,詹涛. 水囊土压力计研制与试验验证研究. 华东交通大学学报. 2023(04): 93-102 .
    8. 于化月,李顺群,万勇,郭林坪,陈之祥. 加卸载循环下挡墙后砂土的三维应力状态测试研究. 土木工程学报. 2023(S1): 35-42 .
    9. 周会娟,余尚江,陈晋央,陈显,孟晓洁. 一种双面感压式光纤土压力传感器. 兵工学报. 2023(S1): 132-137 .
    10. 姜彦彬,何斌,王艳芳,陈盛原,何宁. 桩承式路堤桩帽顶面土压测试代表性分析. 公路. 2022(04): 1-7 .
    11. 李茂粟,赵弘,黄旭. 模拟砂箱3D打印压力测量系统PSO模型预测分析. 今日制造与升级. 2022(11): 140-145 .
    12. 邢心魁,宁博宏,林揽日,丁家玮. 光纤光栅土压力盒设计. 仪表技术与传感器. 2021(03): 14-18 .
    13. 洪成雨,鲍成志,武亚军,张一帆,王南苏,娄在明. 增材制造制备性能可控的FBG压力传感器研究. 电子测量与仪器学报. 2021(04): 30-38 .
    14. 李培刚,赵雄,刘丹,李俊奇,霍钊,宣淦清. 薄膜压力传感器混凝土柱压力监测可行性研究. 铁道标准设计. 2021(12): 91-95+122 .
    15. 陈之祥,邵龙潭,李顺群,郭晓霞,田筱剑. 三维真土压力盒的设计与应力参数的计算. 岩土工程学报. 2020(11): 2138-2145 . 本站查看
    16. 鲍成志,洪成雨,孙德安,苏栋. 增材制造碳纤维FBG土压力传感器的研发与验证. 光学学报. 2020(21): 22-30 .

    Other cited types(10)

Catalog

    Article views (227) PDF downloads (248) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return