• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIA Yufeng, FENG Wenquan, CHI Shichun. Dynamic optimization method for statistics of dry density of earth-rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2521-2528. DOI: 10.11779/CJGE20230824
Citation: JIA Yufeng, FENG Wenquan, CHI Shichun. Dynamic optimization method for statistics of dry density of earth-rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2521-2528. DOI: 10.11779/CJGE20230824

Dynamic optimization method for statistics of dry density of earth-rockfill materials

More Information
  • Received Date: August 27, 2023
  • Available Online: January 09, 2024
  • A method for optimizing the compaction quality control index of dams is proposed. Using the collected dry density of field soil samples, the statistics (mean, standard deviation and correlation distance) are determined. According to the correlation between the deformation parameters and the dry density of soils, the random fields of material parameters are established, and the random finite element analysis is carried out to predict the structural responses and safety of dams. Based on the quadratic polynomial, the response surface equation for the statistics of dry density of soils and dam response is established, and the exceeding probability expression is derived. In order to improve the dam safety, the statistics of dry density of soils are further optimized, which provides guidance for the adjustment of construction parameters. Through a practical project, the influence laws of material uncertainty are studied at different filling stages. The uncertain deformation response analysis tends to be stable. The statistics of core wall materials have a great effect on the maximum settlement and deformation gradient. By adjusting the exceeding probability, the statistics of dry density of soils in each partition can be obtained, so as to guide the dam construction and improve the control level of dam deformation as well as the safety evaluation accuracy.
  • [1]
    王宗凯, 宋志强, 刘云贺, 等. 考虑材料参数空间变异性的沥青混凝土心墙坝-覆盖层系统地震响应研究[J]. 振动工程学报, 2022, 35(5): 1188-1199.

    WANG Zongkai, SONG Zhiqiang, LIU Yunhe, et al. Research on seismic response of asphalt concrete core dam-overburden considering the spatial variability of material parameters[J]. Journal of Vibration Engineering, 2022, 35(5): 1188-1199. (in Chinese)
    [2]
    杨鸽, 朱晟. 考虑堆石料空间变异性的土石坝地震反应随机有限元分析[J]. 岩土工程学报, 2016, 38(10): 1822-1832. doi: 10.11779/CJGE201610011

    YANG Ge, ZHU Sheng. Seismic response of rockfill dams considering spatial variability of rockfill materials via random finite element method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1822-1832. (in Chinese) doi: 10.11779/CJGE201610011
    [3]
    CHEN J Y, LIU P F, XU Q, et al. Seismic analysis of hardfill dams considering spatial variability of material parameters[J]. Engineering Structures, 2020, 211: 110439. doi: 10.1016/j.engstruct.2020.110439
    [4]
    CHI S C, FENG W Q, JIA Y F, et al. Application of the soil parameter random field in the 3D random finite element analysis of Guanyinyan composite dam[J]. Case Studies in Construction Materials, 2022, 17: e01329. doi: 10.1016/j.cscm.2022.e01329
    [5]
    CHI S C, FENG W Q, JIA Y F, et al. Stochastic finite-element analysis of earth–rockfill dams considering the spatial variability of soil parameters[J]. International Journal of Geomechanics, 2022, 22(12): 04022224. doi: 10.1061/(ASCE)GM.1943-5622.0002454
    [6]
    CHEN H, LIU D H. Stochastic finite element analysis of rockfill dam considering spatial variability of dam material porosity[J]. Engineering Computations, 2019, 36(9): 2929-2959. doi: 10.1108/EC-06-2018-0266
    [7]
    王建娥, 杨杰, 程琳, 等. 考虑材料参数空间变异性的堆石坝非侵入式随机有限元研究[J]. 水资源与水工程学报, 2019, 30(3): 200-207.

    WANG Jiane, YANG Jie, CHENG Lin, et al. Study on the noninvasive stochastic finite element method of rockfill dam considering spatial variability of material parameters[J]. Journal of Water Resources and Water Engineering, 2019, 30(3): 200-207. (in Chinese)
    [8]
    GUO X F, DIAS D, CARVAJAL C, et al. Modelling and comparison of different types of random fields: case of a real earth dam[J]. Engineering with Computers, 2022, 38(5): 4529-4543.
    [9]
    MOUYEAUX A, CARVAJAL C, BRESSOLETTE P, et al. Probabilistic analysis of pore water pressures of an earth dam using a random finite element approach based on field data[J]. Engineering Geology, 2019, 259: 105190. doi: 10.1016/j.enggeo.2019.105190
    [10]
    闫澍旺, 朱红霞, 刘润, 等. 关于土层相关距离计算方法的研究[J]. 岩土力学, 2007, 28(8): 1581-1586.

    YAN Shuwang, ZHU Hongxia, LIU Run, et al. Study on methods for estimating correlation distance of soil layers[J]. Rock and Soil Mechanics, 2007, 28(8): 1581-1586. (in Chinese)
    [11]
    武清玺, 俞晓正. 混凝土面板堆石坝可靠度计算方法研究[J]. 岩土工程学报, 2004, 26(4): 468-472. http://cge.nhri.cn/article/id/11446

    WU Qingxi, YU Xiaozheng. Research on the method of reliability analysis of concrete faced rockfill dam[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 468-472. (in Chinese) http://cge.nhri.cn/article/id/11446
    [12]
    中国水电顾问集团昆明勘测设计研究院. 观音岩水电站心墙堆石坝段坝顶开裂现象初步分析专题报告[R]. 昆明: 中国水电顾问集团昆明勘测设计研究院, 2014.

    Hydro China Kunming Engineering Corporation. Special Report on Preliminary Analysis of Crack Phenomenon on Dam Crest of Core Rockfill dam section of Guanyinyan Dam[R]. Kunming: Hydro China Kunming Engineering Corporation, 2014. (in Chinese)
    [13]
    仉文岗, 王琦, 陈福勇, 等. 考虑岩体空间变异性的边坡可靠度分析及抗滑桩随机响应研究[J]. 岩土力学, 2021, 42(11): 3157-3168.

    ZHANG Wengang, WANG Qi, CHEN Fuyong, et al. Reliability analysis of slope and random response of anti-sliding pile considering spatial variability of rock mass properties[J]. Rock and Soil Mechanics, 2021, 42(11): 3157-3168. (in Chinese)
    [14]
    崔昊, 肖杨, 孙增春, 等. 微生物加固砂土弹塑性本构模型[J]. 岩土工程学报, 2022, 44(3): 474-482. doi: 10.11779/CJGE202203009

    CUI Hao, XIAO Yang, SUN Zengchun, et al. Elastoplastic constitutive model for biocemented sands[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 474-482. (in Chinese) doi: 10.11779/CJGE202203009
    [15]
    叶晓峰, 周伟, 马刚, 等. 基于反演参数的心墙堆石坝坝顶裂缝成因研究[J]. 武汉大学学报(工学版), 2022, 55(3): 220-228.

    YE Xiaofeng, ZHOU Wei, MA Gang, et al. Study on the cause of crest cracking of earth-core rockfill dam based on inversion parameters[J]. Engineering Journal of Wuhan University, 2022, 55(3): 220-228. (in Chinese)
    [16]
    李炎隆, 唐旺, 温立峰, 等. 沥青混凝土心墙堆石坝地震变形评价方法及其可靠度分析[J]. 水利学报, 2020, 51(5): 580-588.

    LI Yanlong, TANG Wang, WEN Lifeng, et al. Dam seismic deformation evaluation method of asphalt concrete core rockfill dam and its reliability analysis[J]. Journal of Hydraulic Engineering, 2020, 51(5): 580-588. (in Chinese)
    [17]
    碾压式土石坝设计规范: NB/T 10872—2021[S]. 北京: 中国水利水电出版社, 2021.

    Code for Design of Roller-Compacted Embankment Dams: NB/T 10872— 2021[S]. Beijing: China Water & Power Press, 2021. (in Chinese)
    [18]
    苏怀智, 李家田. 在役心墙堆石坝非概率可靠度评估与预警方法[J]. 岩石力学与工程学报, 2021, 40(12): 2526-2534.

    SU Huaizhi, LI Jiatian. Non-probabilistic reliability evaluation and safety early warning method for core-wall rockfill dams in service[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(12): 2526-2534. (in Chinese)
  • Related Articles

    [1]ZHANG Chen, WANG Yi, HAN Xiao-feng, JIN Long. Numerical simulation of frost-heave process in lining canals considering contact behaviors of damage effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 188-193. DOI: 10.11779/CJGE2022S2041
    [2]LIU Wen-hua, YANG Qing, TANG Xiao-wei, UZUOKA Ryosuke. Numerical simulation of hydro-mechanical behaviors of unsaturated soils under fully undrained conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 486-494. DOI: 10.11779/CJGE201703012
    [3]TU Bing-xiong, JIA Jin-qing, YU Jin, CAI Yan-yan, LIU Shi-yu. Numerical simulation of influence on mechanical behavior of flexible retaining method with prestressed anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 146-153. DOI: 10.11779/CJGE2014S2025
    [4]GE Shi-ping, XIE Dong-wu, DING Wen-qi, OUYANG Wen-biao. Simplified numerical simulation method for segment joints of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1600-1605.
    [5]FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320.
    [6]LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921.
    [7]WU Wenhua, LI Xikui. Constitutive model and numerical simulation of thermo-hydro-mechanical behavior in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 411-416.
    [8]CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187.
    [9]LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740.
    [10]CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580.

Catalog

    Article views (325) PDF downloads (73) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return