Citation: | ZHOU Feng-xi, YING Sai, CAI Yuan-qiang. Crystallization pressure of crystals in porous media[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1158-1163. DOI: 10.11779/CJGE201906021 |
[1] |
ESPINOSA R M, FRANKE L, DECKELMANN G.Phase changes of salts in porous materials: Crystallization, hydration and deliquescence[J]. Construction & Building Materials, 2008, 22(8): 1758-1773.
|
[2] |
GAWIN D, KONIORCZYK M, PESAVENTO F.Modelling of hydro-thermo-chemo-mechanical phenomena in building materials[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2013, 61(1): 51-63.
|
[3] |
CASTELLAZZI G, MIRANDA S D, GREMENTIERI L, et al.Multiphase model for hygrothermal analysis of porous media with salt crystallization and hydration[J]. Materials & Structures, 2016, 49(3): 1039-1063.
|
[4] |
CASTELLAZZI G, DE MIRANDA S, GREMENTIERI L, et al.Modelling of Non-Isothermal salt transport and crystallization in historic masonry[J]. Key Engineering Materials, 2015, 624: 222-229.
|
[5] |
WU D, LAI Y, ZHANG M.Thermo-hydro-salt-mechanical coupled model for saturated porous media based on crystallization kinetics[J]. Cold Regions Science & Technology, 2016, 133: 94-107.
|
[6] |
LAI Y, WU D, ZHANG M.Crystallization deformation of a saline soil during freezing and thawing processes[J]. Applied Thermal Engineering, 2017, 120: 463-473.
|
[7] |
TANG L, NILSSON L O.Chloride binding capacity and binding isotherms of opc pastes and mortars[J]. Cement & Concrete Research, 1993, 23(2): 247-253.
|
[8] |
PEL L, HUININK H, KOPINGA K.Salt transport and crystallization in porous building materials[J]. Magnetic Resonance Imaging, 2003, 21(3): 317-320.
|
[9] |
LUBELLI B, HEES R P J V, GROOT C J W P. Sodium chloride crystallization in a “salt transporting” restoration plaster[J]. Cement & Concrete Research, 2006, 36(8): 1467-1474.
|
[10] |
RIJNIERS L A, HUININK H P, PEL L, et al.Experimental evidence of crystallization pressure inside porous media[J]. Physical Review Letters, 2005, 94(7):075503.
|
[11] |
FLATT R J, STEIGER M, SCHERER G W.A commented translation of the paper by C.W. Correns and W. Steinborn on crystallization pressure[J]. Environmental Geology, 2007, 52(2): 187-203.
|
[12] |
STEIGER M.Crystal growth in porous materials: I the crystallization pressure of large crystals[J]. Journal of Crystal Growth, 2005, 282(3): 470-481.
|
[13] |
琚晓冬, 冯文娟, 张玉军, 等. 脆性孔隙介质内的结晶应力[J]. 岩土工程学报, 2016, 38(7): 1246-1253.
(JU Xiao-dong, FENG Wen-juan, ZHANG Yu-jun, et al.Crystallization stresses in brittle porous media[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1246-1253. (in Chinese)) |
[14] |
CORRENS Carl W.Growth and dissolution of crystals under linear pressure[J]. Discussions of the Faraday Society, 1949, 5: 267-271.
|
[15] |
FLATT R J.Salt damage in porous materials: how high supersaturations are generated[J]. Journal of Crystal Growth, 2002, 242(3): 435-454.
|
[16] |
BANIN A, ANDERSON D M.Effects of salt concentration changes during freezing on the unfrozen water content of porous materials[J]. Water Resources Research, 1974, 10(1): 124-128.
|
[17] |
SAETERSDAL R.Heaving conditions by freezing of soils[J]. Engineering Geology, 1981, 18(1/2/3/4): 291-305.
|
[18] |
KURYLYK B L, WATANABE K.The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils[J]. Advances in Water Resources, 2013, 60(60): 160-177.
|
[1] | GONG Jian-qing, PENG Wen-zhe. Three-dimensional finite element analysis of stress and deformation characteristics of energy piles under inclined loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2105-2111. DOI: 10.11779/CJGE202111017 |
[2] | HAN Lei, YE Guan-lin, WANG Jian-hua, YANG Guang-hui, ZHOU Song. Finite element analysis of impact of under-crossing of large shallow shield tunnel on riverbank[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 125-128. DOI: 10.11779/CJGE2015S1025 |
[3] | DU Chuang, DING Hong-yan, ZHANG Pu-yang, LI Jing. Analysis of steel sheet pile cofferdam using finite element method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 159-164. DOI: 10.11779/CJGE2014S2027 |
[4] | CAI Feng, HE Li-jun, ZHOU Xiao-peng, XU Mei-juan, MEI Guo-xiong. Finite element analysis of one-dimensional consolidation of undrained symmetry plane under continuous drainage boundary[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2141-2147. |
[5] | SUN Hai-zhong. Application of finite element numerical analysis in excavation design[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 129-133. |
[6] | HAN Jin-bao, XIONG Ju-hua, SUN Qing, YANG Min. Multi-factor three-dimensional finite element analysis of effects of tunnel construction on adjacent pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 339-344. |
[7] | XU Wen-qiang, YUAN Fan-fan, WEI Chang-fu, YANG Cao-shuai. Bearing capacity of suction tapered bucket foundations based on three-dimensional finite element numerical analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 485-490. |
[8] | HAN Bing, CAO Pinlu. Finite element analysis of interaction between soils and impact sampling bits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1560-1563. |
[9] | ZHENG Hong, C. F. Lee, L. G. Tham, Ge Xiurun. Displacement-controlled method in finite element analysis and its applications[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 81-85. |
[10] | Yu Zehong, Zhang Qisen. Finite Element Analysis for Mechanism of Geonets-Soil Interaction[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 79-85. |
1. |
黄飞虎,裴彦飞,苏谦,王鑫,杨鸿麟,李艳东. 螺旋钢桩加固边坡抗滑承载特性研究. 铁道科学与工程学报. 2024(02): 578-590 .
![]() | |
2. |
李绪勇,杨忠平,刘纲,李勇华,张益铭. 隔离式螺旋桩抗压承载与抗地基冻融特性. 岩土工程学报. 2024(06): 1187-1196 .
![]() | |
3. |
车松阳,裴碧莹,徐洪俊. 螺旋桩室内模型试验设计及结果分析. 科技创新与应用. 2024(17): 68-71 .
![]() | |
4. |
周亚龙,王旭,蒋代军,刘德仁,何菲,晏昌,牛富俊. 青藏铁路接触网异型桩基抗冻拔模型试验研究. 西南交通大学学报. 2024(03): 677-684 .
![]() | |
5. |
孙铁成,杨逸,杨茜,董创奇. 开敞系统中冻土-混凝土界面抗拉强度试验研究. 石家庄铁道大学学报(自然科学版). 2024(02): 92-98 .
![]() | |
6. |
郝冬雪,王磊,陈榕,莫凯强,孔纲强,高宇聪. 冻融循环下粉砂中螺旋锚抗拔稳定模型试验研究. 岩土工程学报. 2023(01): 57-65 .
![]() | |
7. |
陈强,李驰,高利平. 基于图像处理技术水分迁移对光伏桩冻拔稳定性影响的试验研究. 太阳能学报. 2023(01): 49-54 .
![]() | |
8. |
田天伦,苏安双,贾青,王淼. 光伏螺旋桩基抗冻拔数值模拟. 水利科学与寒区工程. 2023(03): 1-6 .
![]() | |
9. |
吴炅,陈鹏飞,尹啸笛,郝洪策,梁成军. 桩体结构参数对螺旋桩-土冻胀性能的影响. 河南科学. 2023(07): 964-969 .
![]() | |
10. |
张学礼,崔强,张树林. 冻土地基中锥管板条装配式基础抗拔承载性能试验研究. 地质科技通报. 2022(02): 335-342 .
![]() | |
11. |
熊维林,葛洪林,富海鹰. 考虑非对称冻结的塔杆基础模型实验研究. 铁道科学与工程学报. 2022(04): 931-940 .
![]() | |
12. |
王卫东,崔强,韩杨春,张树林,孟宪乔. 高寒地区输电线路锥管板条装配式基础抗冻拔性能试验研究. 防灾减灾工程学报. 2022(03): 542-552 .
![]() | |
13. |
王超哲,吴进,王立兴,刘浩,杨紫健,吴文兵. 黏弹性地基中螺旋桩水平动力特性. 中南大学学报(自然科学版). 2022(06): 2279-2289 .
![]() | |
14. |
杨朝旭,任刚,殷卫永,韩战涛,任文博,李佳佳. 钢管螺旋桩防护公路膨胀土高边坡工程应用. 公路. 2022(07): 41-48 .
![]() | |
15. |
陈明伟,陈航杰. 桩型对冻土桩基冻胀特性的影响研究. 甘肃科技. 2022(09): 8-12 .
![]() | |
16. |
黄旭斌,盛煜,黄龙,彭尔兴,曹伟,张玺彦,何彬彬. 单向冻结条件下扩底桩抗冻拔能力试验研究. 工程科学与技术. 2021(01): 122-131 .
![]() | |
17. |
屈讼昭,郭咏华,王仪,张斌,张建明,孙清. 大锚片螺旋锚在粉质黏土中的下压承载性能. 土木与环境工程学报(中英文). 2021(05): 34-44 .
![]() | |
18. |
高晓静,孙铁成,李晓康,廖一鸣. 冻结作用下粉土-混凝土接触面抗拉强度试验研究. 冰川冻土. 2020(02): 499-507 .
![]() | |
19. |
黄旭斌,盛煜,黄龙,何彬彬,张玺彦. 季节冻土区扩底单桩受力性能研究进展与展望. 冰川冻土. 2020(04): 1220-1228 .
![]() | |
20. |
王希云,邵康,苏谦,刘凯文,邹婷. 单叶片螺旋钢桩竖向承载特性数值分析. 铁道标准设计. 2019(07): 66-71 .
![]() | |
21. |
王希云. 螺旋钢桩设计参数对抗压承载性能的影响研究. 路基工程. 2019(03): 57-61 .
![]() | |
22. |
邵康,苏谦,刘凯文,李婷,周珩. 竖向受压下考虑安装扰动螺旋钢桩数值模拟分析与现场载荷试验. 岩石力学与工程学报. 2019(12): 2570-2581 .
![]() |