• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Feng-xi, YING Sai, CAI Yuan-qiang. Crystallization pressure of crystals in porous media[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1158-1163. DOI: 10.11779/CJGE201906021
Citation: ZHOU Feng-xi, YING Sai, CAI Yuan-qiang. Crystallization pressure of crystals in porous media[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1158-1163. DOI: 10.11779/CJGE201906021

Crystallization pressure of crystals in porous media

More Information
  • Received Date: June 19, 2018
  • Published Date: June 24, 2019
  • The pressure exerted by growing crystals of salts or water in porous materials is a major factor to induce deformation and freeze-thaw damage. Theoretical derivations for the crystallization pressure of salt crystals driven by supersaturation and ice crystals driven by temperatures are presented based on the chemical potentials of solutions and crystals, in which the ion interaction is taken into account. The models for the maximum crystallization pressure that the growing crystals in non-ideal solution exert on the pore walls are developed. The pressure from crystallization of salts and water as well as the freezing temperature for solutions of aqueous NaCl and Na2SO4 under different concentrations and temperatures are parametrically analyzed, respectively. The results show that for the salt crystals, the crystallization pressure is closely related to the ratio of supersaturation, solution activity and type of salt crystals; for the ice crystals, the crystallization pressure is related to the ambient temperature and solution activity.
  • [1]
    ESPINOSA R M, FRANKE L, DECKELMANN G.Phase changes of salts in porous materials: Crystallization, hydration and deliquescence[J]. Construction & Building Materials, 2008, 22(8): 1758-1773.
    [2]
    GAWIN D, KONIORCZYK M, PESAVENTO F.Modelling of hydro-thermo-chemo-mechanical phenomena in building materials[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2013, 61(1): 51-63.
    [3]
    CASTELLAZZI G, MIRANDA S D, GREMENTIERI L, et al.Multiphase model for hygrothermal analysis of porous media with salt crystallization and hydration[J]. Materials & Structures, 2016, 49(3): 1039-1063.
    [4]
    CASTELLAZZI G, DE MIRANDA S, GREMENTIERI L, et al.Modelling of Non-Isothermal salt transport and crystallization in historic masonry[J]. Key Engineering Materials, 2015, 624: 222-229.
    [5]
    WU D, LAI Y, ZHANG M.Thermo-hydro-salt-mechanical coupled model for saturated porous media based on crystallization kinetics[J]. Cold Regions Science & Technology, 2016, 133: 94-107.
    [6]
    LAI Y, WU D, ZHANG M.Crystallization deformation of a saline soil during freezing and thawing processes[J]. Applied Thermal Engineering, 2017, 120: 463-473.
    [7]
    TANG L, NILSSON L O.Chloride binding capacity and binding isotherms of opc pastes and mortars[J]. Cement & Concrete Research, 1993, 23(2): 247-253.
    [8]
    PEL L, HUININK H, KOPINGA K.Salt transport and crystallization in porous building materials[J]. Magnetic Resonance Imaging, 2003, 21(3): 317-320.
    [9]
    LUBELLI B, HEES R P J V, GROOT C J W P. Sodium chloride crystallization in a “salt transporting” restoration plaster[J]. Cement & Concrete Research, 2006, 36(8): 1467-1474.
    [10]
    RIJNIERS L A, HUININK H P, PEL L, et al.Experimental evidence of crystallization pressure inside porous media[J]. Physical Review Letters, 2005, 94(7):075503.
    [11]
    FLATT R J, STEIGER M, SCHERER G W.A commented translation of the paper by C.W. Correns and W. Steinborn on crystallization pressure[J]. Environmental Geology, 2007, 52(2): 187-203.
    [12]
    STEIGER M.Crystal growth in porous materials: I the crystallization pressure of large crystals[J]. Journal of Crystal Growth, 2005, 282(3): 470-481.
    [13]
    琚晓冬, 冯文娟, 张玉军, 等. 脆性孔隙介质内的结晶应力[J]. 岩土工程学报, 2016, 38(7): 1246-1253.
    (JU Xiao-dong, FENG Wen-juan, ZHANG Yu-jun, et al.Crystallization stresses in brittle porous media[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1246-1253. (in Chinese))
    [14]
    CORRENS Carl W.Growth and dissolution of crystals under linear pressure[J]. Discussions of the Faraday Society, 1949, 5: 267-271.
    [15]
    FLATT R J.Salt damage in porous materials: how high supersaturations are generated[J]. Journal of Crystal Growth, 2002, 242(3): 435-454.
    [16]
    BANIN A, ANDERSON D M.Effects of salt concentration changes during freezing on the unfrozen water content of porous materials[J]. Water Resources Research, 1974, 10(1): 124-128.
    [17]
    SAETERSDAL R.Heaving conditions by freezing of soils[J]. Engineering Geology, 1981, 18(1/2/3/4): 291-305.
    [18]
    KURYLYK B L, WATANABE K.The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils[J]. Advances in Water Resources, 2013, 60(60): 160-177.
  • Related Articles

    [1]GONG Jian-qing, PENG Wen-zhe. Three-dimensional finite element analysis of stress and deformation characteristics of energy piles under inclined loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2105-2111. DOI: 10.11779/CJGE202111017
    [2]HAN Lei, YE Guan-lin, WANG Jian-hua, YANG Guang-hui, ZHOU Song. Finite element analysis of impact of under-crossing of large shallow shield tunnel on riverbank[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 125-128. DOI: 10.11779/CJGE2015S1025
    [3]DU Chuang, DING Hong-yan, ZHANG Pu-yang, LI Jing. Analysis of steel sheet pile cofferdam using finite element method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 159-164. DOI: 10.11779/CJGE2014S2027
    [4]CAI Feng, HE Li-jun, ZHOU Xiao-peng, XU Mei-juan, MEI Guo-xiong. Finite element analysis of one-dimensional consolidation of undrained symmetry plane under continuous drainage boundary[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2141-2147.
    [5]SUN Hai-zhong. Application of finite element numerical analysis in excavation design[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 129-133.
    [6]HAN Jin-bao, XIONG Ju-hua, SUN Qing, YANG Min. Multi-factor three-dimensional finite element analysis of effects of tunnel construction on adjacent pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 339-344.
    [7]XU Wen-qiang, YUAN Fan-fan, WEI Chang-fu, YANG Cao-shuai. Bearing capacity of suction tapered bucket foundations based on three-dimensional finite element numerical analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 485-490.
    [8]HAN Bing, CAO Pinlu. Finite element analysis of interaction between soils and impact sampling bits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1560-1563.
    [9]ZHENG Hong, C. F. Lee, L. G. Tham, Ge Xiurun. Displacement-controlled method in finite element analysis and its applications[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 81-85.
    [10]Yu Zehong, Zhang Qisen. Finite Element Analysis for Mechanism of Geonets-Soil Interaction[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 79-85.
  • Cited by

    Periodical cited type(22)

    1. 黄飞虎,裴彦飞,苏谦,王鑫,杨鸿麟,李艳东. 螺旋钢桩加固边坡抗滑承载特性研究. 铁道科学与工程学报. 2024(02): 578-590 .
    2. 李绪勇,杨忠平,刘纲,李勇华,张益铭. 隔离式螺旋桩抗压承载与抗地基冻融特性. 岩土工程学报. 2024(06): 1187-1196 . 本站查看
    3. 车松阳,裴碧莹,徐洪俊. 螺旋桩室内模型试验设计及结果分析. 科技创新与应用. 2024(17): 68-71 .
    4. 周亚龙,王旭,蒋代军,刘德仁,何菲,晏昌,牛富俊. 青藏铁路接触网异型桩基抗冻拔模型试验研究. 西南交通大学学报. 2024(03): 677-684 .
    5. 孙铁成,杨逸,杨茜,董创奇. 开敞系统中冻土-混凝土界面抗拉强度试验研究. 石家庄铁道大学学报(自然科学版). 2024(02): 92-98 .
    6. 郝冬雪,王磊,陈榕,莫凯强,孔纲强,高宇聪. 冻融循环下粉砂中螺旋锚抗拔稳定模型试验研究. 岩土工程学报. 2023(01): 57-65 . 本站查看
    7. 陈强,李驰,高利平. 基于图像处理技术水分迁移对光伏桩冻拔稳定性影响的试验研究. 太阳能学报. 2023(01): 49-54 .
    8. 田天伦,苏安双,贾青,王淼. 光伏螺旋桩基抗冻拔数值模拟. 水利科学与寒区工程. 2023(03): 1-6 .
    9. 吴炅,陈鹏飞,尹啸笛,郝洪策,梁成军. 桩体结构参数对螺旋桩-土冻胀性能的影响. 河南科学. 2023(07): 964-969 .
    10. 张学礼,崔强,张树林. 冻土地基中锥管板条装配式基础抗拔承载性能试验研究. 地质科技通报. 2022(02): 335-342 .
    11. 熊维林,葛洪林,富海鹰. 考虑非对称冻结的塔杆基础模型实验研究. 铁道科学与工程学报. 2022(04): 931-940 .
    12. 王卫东,崔强,韩杨春,张树林,孟宪乔. 高寒地区输电线路锥管板条装配式基础抗冻拔性能试验研究. 防灾减灾工程学报. 2022(03): 542-552 .
    13. 王超哲,吴进,王立兴,刘浩,杨紫健,吴文兵. 黏弹性地基中螺旋桩水平动力特性. 中南大学学报(自然科学版). 2022(06): 2279-2289 .
    14. 杨朝旭,任刚,殷卫永,韩战涛,任文博,李佳佳. 钢管螺旋桩防护公路膨胀土高边坡工程应用. 公路. 2022(07): 41-48 .
    15. 陈明伟,陈航杰. 桩型对冻土桩基冻胀特性的影响研究. 甘肃科技. 2022(09): 8-12 .
    16. 黄旭斌,盛煜,黄龙,彭尔兴,曹伟,张玺彦,何彬彬. 单向冻结条件下扩底桩抗冻拔能力试验研究. 工程科学与技术. 2021(01): 122-131 .
    17. 屈讼昭,郭咏华,王仪,张斌,张建明,孙清. 大锚片螺旋锚在粉质黏土中的下压承载性能. 土木与环境工程学报(中英文). 2021(05): 34-44 .
    18. 高晓静,孙铁成,李晓康,廖一鸣. 冻结作用下粉土-混凝土接触面抗拉强度试验研究. 冰川冻土. 2020(02): 499-507 .
    19. 黄旭斌,盛煜,黄龙,何彬彬,张玺彦. 季节冻土区扩底单桩受力性能研究进展与展望. 冰川冻土. 2020(04): 1220-1228 .
    20. 王希云,邵康,苏谦,刘凯文,邹婷. 单叶片螺旋钢桩竖向承载特性数值分析. 铁道标准设计. 2019(07): 66-71 .
    21. 王希云. 螺旋钢桩设计参数对抗压承载性能的影响研究. 路基工程. 2019(03): 57-61 .
    22. 邵康,苏谦,刘凯文,李婷,周珩. 竖向受压下考虑安装扰动螺旋钢桩数值模拟分析与现场载荷试验. 岩石力学与工程学报. 2019(12): 2570-2581 .

    Other cited types(21)

Catalog

    Article views (353) PDF downloads (152) Cited by(43)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return