• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HAO Dongxue, WANG Lei, CHEN Rong, MO Kaiqiang, KONG Gangqiang, GAO Yucong. Experimental investigation on uplift stability of helical anchors in silty sand under freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 57-65. DOI: 10.11779/CJGE20211293
Citation: HAO Dongxue, WANG Lei, CHEN Rong, MO Kaiqiang, KONG Gangqiang, GAO Yucong. Experimental investigation on uplift stability of helical anchors in silty sand under freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 57-65. DOI: 10.11779/CJGE20211293

Experimental investigation on uplift stability of helical anchors in silty sand under freeze-thaw cycles

More Information
  • Received Date: November 02, 2021
  • Available Online: February 03, 2023
  • Published Date: November 02, 2021
  • At present, the helical anchor has been gradually adopted in electric power projects in cold areas. However, the experimental investigation on its freeze-thaw stability in seasonal frozen soil is limited, especially considering the uplift load simultaneously for transmission line foundation. Therefore, the unidirectional freeze-thaw cycle model tests on the helical anchors in silty sand are carried out to investigate the effects of anchor geometry, top constraint conditions, freeze-thaw cycle times and freezing temperature on the development of frost-jacking displacement. It is concluded that when the helical plate is buried below the frozen depth line, the frost-jacking displacement is basically related to the uplift capacity of the anchor, that is, the anchors with larger uplift capacity in non-frozen soil have relatively small frost-jacking displacement. And when the uplift capacities of both are anchors similar, the anchor with small helix-spacing is more beneficial to resisting frost jacking than that with large spacing. The frost-jacking displacement of the anchors partially recovers after the soil melts for the case of the anchors without top constraint, while the upward displacement of the anchors continues to develop during soil melting process for the case of the anchors subjected to uplift force. The single-helix anchor with large diameter and multi-helix anchor with small spacing have good anti-frost-jacking behavior, and their displacement increments at the end of each freeze and thaw become stable after suffering the third freeze-thaw cycle. In the closed system, the decrease of freezing temperature at the same freezing period will increase the tangential frost-heave force of the anchor rod, which will aggravate the development of the frost-jacking displacement. The study results may provide reference for the design of the helical anchors in seasonal freezing areas.
  • [1]
    冻土地区架空输电线路基础设计技术规程: DL/T 5501—2015[S]. 北京: 中国电力出版社, 2015.

    Technical Code for Foundation Design of Overhead Transmission Line in Frozen Soil Region: DL/T 5501—2015[S]. Beijing: China Electric Power Press, 2015. (in Chinese)
    [2]
    祝永坤, 王宝成. 高寒地区输电线路铁塔基础冻害原因分析及防范措施[J]. 内蒙古电力技术, 2011, 29(6): 90-93. https://www.cnki.com.cn/Article/CJFDTOTAL-NMDJ201106030.htm

    ZHU Yongkun, WANG Baocheng. Cause analysis to foundation freeze damage of transmission power line towers in severe cold district and its prevention measure[J]. Inner Mongolia Electric Power, 2011, 29(6): 90-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NMDJ201106030.htm
    [3]
    李孝臣. 季节冻土区高压输电杆塔斜面基础研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.

    LI Xiaochen. Research on the Bevel Foundation of the High-Voltage Transmission Tower in the Seasonal Frozen Soil Region[D]. Harbin: Harbin Institute of Technology, 2008. (in Chinese)
    [4]
    鲁先龙. 上拔荷载作用下冻土地基混凝土单桩模型试验[J]. 建井技术, 2012, 33(6): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS201206003.htm

    LU Xianlong. Model test of concrete single pile in frozen soil foundation under uplift load[J]. Mine Construction Technology, 2012, 33(6): 17-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS201206003.htm
    [5]
    黄晓尧, 陈建武, 何挺, 等. 青藏高原冻土地区螺旋锚基础工程应用技术探讨[J]. 浙江电力, 2019, 38(7): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJDL201907010.htm

    HUANG Xiaoyao, CHEN Jianwu, HE Ting, et al. Discussion on engineering application of helical piles foundation in permafrost region of the Tibetan Plateau[J]. Zhejiang Electric Power, 2019, 38(7): 58-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZJDL201907010.htm
    [6]
    JOHNSTON G H, LADANYI B. Field tests of grouted rod anchors in permafrost[J]. Canadian Geotechnical Journal, 1972, 9(2): 176-194. doi: 10.1139/t72-018
    [7]
    JOHNSTON G H, LADANYI B. Field tests of deep power-installed screw anchors in permafrost[J]. Canadian Geotechnical Journal, 1974, 11(3): 348-358. doi: 10.1139/t74-036
    [8]
    ALDAEEF A A, RAYHANI M T. Adfreeze strength and creep behavior of pile foundations in warming permafrost[M]//Advances in Analysis and Design of Deep Foundations. Cham: Springer International Publishing, 2017: 254-264.
    [9]
    ALDAEEF A A, RAYHANI M T. Interface shear strength characteristics of steel piles in frozen clay under varying exposure temperature[J]. Soils and Foundations, 2019, 59(6): 2110-2124. doi: 10.1016/j.sandf.2019.11.003
    [10]
    GUO L, XIE Y L, YU Q H, et al. Displacements of tower foundations in permafrost regions along the Qinghai-Tibet Power Transmission Line[J]. Cold Regions Science and Technology, 2016, 121: 187-195. doi: 10.1016/j.coldregions.2015.07.012
    [11]
    WEN Z, YU Q H, ZHANG M L, et al. Stress and deformation characteristics of transmission tower foundations in permafrost regions along the Qinghai-Tibet Power Transmission Line[J]. Cold Regions Science and Technology, 2016, 121: 214-225. doi: 10.1016/j.coldregions.2015.06.007
    [12]
    ALDAEEF A A, RAYHANI M T. Pull-out capacity and creep behavior of helical piles in frozen ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(12): 04020140. doi: 10.1061/(ASCE)GT.1943-5606.0002405
    [13]
    陈然. 螺旋桩在季节性冻土场地抗冻拔性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    CHEN Ran. Study on Anti-Frost Heaving Characteristics of the Screw Piles in the Seasonal Frozen Region[D]. Harbin: Harbin Institute of Technology, 2010. (in Chinese)
    [14]
    WANG T F, LIU J K, TAI B W, et al. Modeling frost jacking behaviors of screw piles subjected to one-dimensional freezing condition[J]. Journal of Chang'an University (Natural Science Edition), 2017, 37(4): 25-32.
    [15]
    WANG T F, LIU J K, TAI B W, et al. Frost jacking characteristics of screw piles in seasonally frozen regions based on thermo-mechanical simulations[J]. Computers and Geotechnics, 2017, 91: 27-38. doi: 10.1016/j.compgeo.2017.06.018
    [16]
    田彦德. 螺旋钢桩冻胀融沉特性试验研究[D]. 北京: 北京交通大学, 2017.

    TIAN Yande. Experimental Study on Frost Heave and Thaw Settlement Characteristics of Screw Steel Piles[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese)
    [17]
    王腾飞, 刘建坤, 邰博文, 等. 螺旋桩冻拔特性的模型试验研究[J]. 岩土工程学报, 2018, 40(6): 1084-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201806017.htm

    WANG Tengfei, LIU Jiankun, TAI Bowen, et al. Model tests on frost jacking behaviors of helical steel piles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1084-1092. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201806017.htm
    [18]
    WANG T F, LIU J K, LUO Q, et al. Calculation for frost jacking resistance of single helical steel piles in cohesive soils[J]. Journal of Cold Regions Engineering, 2021, 35(2): 06021001.
    [19]
    FERNANDEZ S S, TOM J G J, BASER T. Impact of subsurface warming on the capacity of helical piles installed in permafrost layers[C]// International Foundations Congress and Equipment Expo, 2021.
    [20]
    架空输电线路螺旋锚基础设计规范: Q/GDW 10584—2022[S]. 北京: 中国电力出版社, 2022.

    Technical Regulation for Design Screw Anchor Foundation of Overhead Transmission Line: Q/GDW 10584—2022[S]. Beijing: China Elcetric Power Press, 2022. (in Chinese)
    [21]
    CHANCE A B. Technical Design Manual[M]. 4th ed. Connecticut: Hubbell Power Systems, Inc., 2018.
    [22]
    郝冬雪, 陈榕, 符胜男. 砂土中螺旋锚上拔承载特性模型试验研究[J]. 岩土工程学报, 2015, 37(1): 126-132. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201501018.htm

    HAO Dongxue, CHEN Rong, FU Shengnan. Experimental study on uplift capacity of multi-helix anchors in sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 126-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201501018.htm
    [23]
    BUHLER R, CERATO A B. Design of dynamically wind-loaded helical piers for small wind turbines[J]. Journal of Performance of Constructed Facilities, 2010, 24(4): 417-426.
    [24]
    徐韩宝, 崔自治, 沈素平. 封闭系统条件下银川平原压实砂土的冻融变形[J]. 岩土工程技术, 2019, 33(5): 263-266. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGJ201905004.htm

    XU Hanbao, CUI Zizhi, SHEN Suping. Freeze-thaw deformation of compacted sandy soil in Yinchuan plain under closed system[J]. Geotechnical Engineering Technique, 2019, 33(5): 263-266. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGJ201905004.htm
    [25]
    严晗, 王天亮, 刘建坤. 粉砂土反复冻胀融沉特性试验研究[J]. 岩土力学, 2013, 34(11): 3159-3165. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311021.htm

    YAN Han, WANG Tianliang, LIU Jiankun. Experimental study of repeated frost heave and thaw settlement properties of silty sand[J]. Rock and Soil Mechanics, 2013, 34(11): 3159-3165. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311021.htm
    [26]
    宁方波. 地下冻结工程中土体冻胀融沉对地表变形的影响分析[D]. 北京: 煤炭科学研究总院, 2005.

    NING Fangbo. Analyse of ground surface deformation in underground freezing project affected by frost-heaving and thawing-settlement[D]. Beijing: China Coal Research Institute, 2005. (in Chinese)
    [27]
    常丹, 刘建坤, 李旭. 冻融循环下粉砂土屈服及强度特性的试验研究[J]. 岩石力学与工程学报, 2015, 34(8): 1721-1728. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201508025.htm

    CHANG Dan, LIU Jiankun, LI Xu. Experimental study on yielding and strength properies of silty sand under freezing-thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(8): 1721-1728. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201508025.htm
    [28]
    张玺彦, 盛煜, 黄龙, 等. 切向冻胀力的研究现状及展望[J]. 冰川冻土, 2020, 42(3): 865-877. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202003014.htm

    ZHANG Xiyan, SHENG Yu, HUANG Long, et al. Study of the tangential frost heaving force: status and prospects[J]. Journal of Glaciology and Geocryology, 2020, 42(3): 865-877. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202003014.htm
    [29]
    石泉彬, 杨平, 谈金忠, 等. 冻土与结构接触面冻结强度压桩法测定系统研制及试验研究[J]. 岩土工程学报, 2019, 41(1): 139-147. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901019.htm

    SHI Quanbin, YANG Ping, TAN Jinzhong, et al. Development of measuring system by pile-pressing method and experimental study on adfreezing strength at interface between frozen soil and structure[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 139-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901019.htm
  • Related Articles

    [1]Research on the multifactorial influence patterns and resistance mechanisms of frost heave characteristics in conical piles[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240657
    [2]WANG Zhongtao, LUO Guangyu, KONG Gangqiang, ZHANG Yu, FAN Zhixian, YANG Qing. Visual centrifugal model tests on capacity of anchor piles and displacement field around piles under oblique pull-out loads[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 189-195. DOI: 10.11779/CJGE20211441
    [3]SHE Fang-tao, WU Zheng-qi, ZHOU Wei-zong, LIU Guo-ping, LI Lei. Deformation control of surrounding rock of rectangular pipe-jacking tunnels considering key construction parameters[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 247-253. DOI: 10.11779/CJGE2022S1044
    [4]ZHANG Chang-guang, GAO Ben-xian, SHAN Ye-peng, LI Zong-hui. Unified plastic solution for stress and displacement of tunnels in cold regions considering transversely isotropic frost heave[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1825-1831. DOI: 10.11779/CJGE202010007
    [5]WANG Teng-fei, LIU Jian-kun, TAI Bo-wen, LÜ Peng. Model tests on frost jacking behaviors of helical steel piles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1084-1092. DOI: 10.11779/CJGE201806014
    [6]XIA Yuan-you, CHEN Chen, NI Qing. Pull-out mechanism of continuous ball shape anchors in transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 804-812. DOI: 10.11779/CJGE201705004
    [7]CAO Jia-wen, PENG Zhen-bin, PENG Wen-xiang, HE Zhong-ming, WU Qi-hong. Experimental study on mechanical characteristics of inflatable anchors in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1399-1404.
    [8]ZHOU Yong, ZHU Yan-peng. Influencing factors of horizontal displacement of wall facing of grillage flexible supporting structure with prestressed anchors[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 470.
    [9]LUO Zhanyou, GONG Xiaonan, ZHU Xiangrong. Soil displacements around jacked group piles based on construction sequence and compacting effects[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 824-829.
    [10]LIN Hang, CAO Ping, GONG Fengqiang. Analysis of locations and displacement modes of monitoring points in displacement mutation criteria[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1433-1438.
  • Other Related Supplements

  • Cited by

    Periodical cited type(5)

    1. 宗钟凌,岑航,缪惠全,黄德龙,汤爱平,刘强. 螺旋桩基础动力响应及抗震研究进展. 工业建筑. 2024(02): 133-143 .
    2. 李绪勇,杨忠平,刘纲,李勇华,张益铭. 隔离式螺旋桩抗压承载与抗地基冻融特性. 岩土工程学报. 2024(06): 1187-1196 . 本站查看
    3. 郎瑞卿,裴璐熹,孙立强,冯守中. 软黏土带压冻融循环下不固结力学特性试验研究. 岩土工程学报. 2024(S2): 43-48 . 本站查看
    4. 李聪,谢天,吴亮亮,张新宙,赵凯艺. 锚固裂隙岩体冻融试件拉拔试验研究. 红水河. 2024(05): 128-134 .
    5. 高明德,庾思黎,叶永明,周为华. 大小螺旋锚组合型基础现场试验研究. 工业建筑. 2023(S1): 539-542 .

    Other cited types(6)

Catalog

    Article views (275) PDF downloads (83) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return