Citation: | HAO Dongxue, WANG Lei, CHEN Rong, MO Kaiqiang, KONG Gangqiang, GAO Yucong. Experimental investigation on uplift stability of helical anchors in silty sand under freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 57-65. DOI: 10.11779/CJGE20211293 |
[1] |
冻土地区架空输电线路基础设计技术规程: DL/T 5501—2015[S]. 北京: 中国电力出版社, 2015.
Technical Code for Foundation Design of Overhead Transmission Line in Frozen Soil Region: DL/T 5501—2015[S]. Beijing: China Electric Power Press, 2015. (in Chinese)
|
[2] |
祝永坤, 王宝成. 高寒地区输电线路铁塔基础冻害原因分析及防范措施[J]. 内蒙古电力技术, 2011, 29(6): 90-93. https://www.cnki.com.cn/Article/CJFDTOTAL-NMDJ201106030.htm
ZHU Yongkun, WANG Baocheng. Cause analysis to foundation freeze damage of transmission power line towers in severe cold district and its prevention measure[J]. Inner Mongolia Electric Power, 2011, 29(6): 90-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NMDJ201106030.htm
|
[3] |
李孝臣. 季节冻土区高压输电杆塔斜面基础研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.
LI Xiaochen. Research on the Bevel Foundation of the High-Voltage Transmission Tower in the Seasonal Frozen Soil Region[D]. Harbin: Harbin Institute of Technology, 2008. (in Chinese)
|
[4] |
鲁先龙. 上拔荷载作用下冻土地基混凝土单桩模型试验[J]. 建井技术, 2012, 33(6): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS201206003.htm
LU Xianlong. Model test of concrete single pile in frozen soil foundation under uplift load[J]. Mine Construction Technology, 2012, 33(6): 17-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS201206003.htm
|
[5] |
黄晓尧, 陈建武, 何挺, 等. 青藏高原冻土地区螺旋锚基础工程应用技术探讨[J]. 浙江电力, 2019, 38(7): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJDL201907010.htm
HUANG Xiaoyao, CHEN Jianwu, HE Ting, et al. Discussion on engineering application of helical piles foundation in permafrost region of the Tibetan Plateau[J]. Zhejiang Electric Power, 2019, 38(7): 58-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZJDL201907010.htm
|
[6] |
JOHNSTON G H, LADANYI B. Field tests of grouted rod anchors in permafrost[J]. Canadian Geotechnical Journal, 1972, 9(2): 176-194. doi: 10.1139/t72-018
|
[7] |
JOHNSTON G H, LADANYI B. Field tests of deep power-installed screw anchors in permafrost[J]. Canadian Geotechnical Journal, 1974, 11(3): 348-358. doi: 10.1139/t74-036
|
[8] |
ALDAEEF A A, RAYHANI M T. Adfreeze strength and creep behavior of pile foundations in warming permafrost[M]//Advances in Analysis and Design of Deep Foundations. Cham: Springer International Publishing, 2017: 254-264.
|
[9] |
ALDAEEF A A, RAYHANI M T. Interface shear strength characteristics of steel piles in frozen clay under varying exposure temperature[J]. Soils and Foundations, 2019, 59(6): 2110-2124. doi: 10.1016/j.sandf.2019.11.003
|
[10] |
GUO L, XIE Y L, YU Q H, et al. Displacements of tower foundations in permafrost regions along the Qinghai-Tibet Power Transmission Line[J]. Cold Regions Science and Technology, 2016, 121: 187-195. doi: 10.1016/j.coldregions.2015.07.012
|
[11] |
WEN Z, YU Q H, ZHANG M L, et al. Stress and deformation characteristics of transmission tower foundations in permafrost regions along the Qinghai-Tibet Power Transmission Line[J]. Cold Regions Science and Technology, 2016, 121: 214-225. doi: 10.1016/j.coldregions.2015.06.007
|
[12] |
ALDAEEF A A, RAYHANI M T. Pull-out capacity and creep behavior of helical piles in frozen ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(12): 04020140. doi: 10.1061/(ASCE)GT.1943-5606.0002405
|
[13] |
陈然. 螺旋桩在季节性冻土场地抗冻拔性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2010.
CHEN Ran. Study on Anti-Frost Heaving Characteristics of the Screw Piles in the Seasonal Frozen Region[D]. Harbin: Harbin Institute of Technology, 2010. (in Chinese)
|
[14] |
WANG T F, LIU J K, TAI B W, et al. Modeling frost jacking behaviors of screw piles subjected to one-dimensional freezing condition[J]. Journal of Chang'an University (Natural Science Edition), 2017, 37(4): 25-32.
|
[15] |
WANG T F, LIU J K, TAI B W, et al. Frost jacking characteristics of screw piles in seasonally frozen regions based on thermo-mechanical simulations[J]. Computers and Geotechnics, 2017, 91: 27-38. doi: 10.1016/j.compgeo.2017.06.018
|
[16] |
田彦德. 螺旋钢桩冻胀融沉特性试验研究[D]. 北京: 北京交通大学, 2017.
TIAN Yande. Experimental Study on Frost Heave and Thaw Settlement Characteristics of Screw Steel Piles[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese)
|
[17] |
王腾飞, 刘建坤, 邰博文, 等. 螺旋桩冻拔特性的模型试验研究[J]. 岩土工程学报, 2018, 40(6): 1084-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201806017.htm
WANG Tengfei, LIU Jiankun, TAI Bowen, et al. Model tests on frost jacking behaviors of helical steel piles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1084-1092. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201806017.htm
|
[18] |
WANG T F, LIU J K, LUO Q, et al. Calculation for frost jacking resistance of single helical steel piles in cohesive soils[J]. Journal of Cold Regions Engineering, 2021, 35(2): 06021001.
|
[19] |
FERNANDEZ S S, TOM J G J, BASER T. Impact of subsurface warming on the capacity of helical piles installed in permafrost layers[C]// International Foundations Congress and Equipment Expo, 2021.
|
[20] |
架空输电线路螺旋锚基础设计规范: Q/GDW 10584—2022[S]. 北京: 中国电力出版社, 2022.
Technical Regulation for Design Screw Anchor Foundation of Overhead Transmission Line: Q/GDW 10584—2022[S]. Beijing: China Elcetric Power Press, 2022. (in Chinese)
|
[21] |
CHANCE A B. Technical Design Manual[M]. 4th ed. Connecticut: Hubbell Power Systems, Inc., 2018.
|
[22] |
郝冬雪, 陈榕, 符胜男. 砂土中螺旋锚上拔承载特性模型试验研究[J]. 岩土工程学报, 2015, 37(1): 126-132. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201501018.htm
HAO Dongxue, CHEN Rong, FU Shengnan. Experimental study on uplift capacity of multi-helix anchors in sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 126-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201501018.htm
|
[23] |
BUHLER R, CERATO A B. Design of dynamically wind-loaded helical piers for small wind turbines[J]. Journal of Performance of Constructed Facilities, 2010, 24(4): 417-426.
|
[24] |
徐韩宝, 崔自治, 沈素平. 封闭系统条件下银川平原压实砂土的冻融变形[J]. 岩土工程技术, 2019, 33(5): 263-266. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGJ201905004.htm
XU Hanbao, CUI Zizhi, SHEN Suping. Freeze-thaw deformation of compacted sandy soil in Yinchuan plain under closed system[J]. Geotechnical Engineering Technique, 2019, 33(5): 263-266. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGJ201905004.htm
|
[25] |
严晗, 王天亮, 刘建坤. 粉砂土反复冻胀融沉特性试验研究[J]. 岩土力学, 2013, 34(11): 3159-3165. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311021.htm
YAN Han, WANG Tianliang, LIU Jiankun. Experimental study of repeated frost heave and thaw settlement properties of silty sand[J]. Rock and Soil Mechanics, 2013, 34(11): 3159-3165. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311021.htm
|
[26] |
宁方波. 地下冻结工程中土体冻胀融沉对地表变形的影响分析[D]. 北京: 煤炭科学研究总院, 2005.
NING Fangbo. Analyse of ground surface deformation in underground freezing project affected by frost-heaving and thawing-settlement[D]. Beijing: China Coal Research Institute, 2005. (in Chinese)
|
[27] |
常丹, 刘建坤, 李旭. 冻融循环下粉砂土屈服及强度特性的试验研究[J]. 岩石力学与工程学报, 2015, 34(8): 1721-1728. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201508025.htm
CHANG Dan, LIU Jiankun, LI Xu. Experimental study on yielding and strength properies of silty sand under freezing-thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(8): 1721-1728. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201508025.htm
|
[28] |
张玺彦, 盛煜, 黄龙, 等. 切向冻胀力的研究现状及展望[J]. 冰川冻土, 2020, 42(3): 865-877. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202003014.htm
ZHANG Xiyan, SHENG Yu, HUANG Long, et al. Study of the tangential frost heaving force: status and prospects[J]. Journal of Glaciology and Geocryology, 2020, 42(3): 865-877. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202003014.htm
|
[29] |
石泉彬, 杨平, 谈金忠, 等. 冻土与结构接触面冻结强度压桩法测定系统研制及试验研究[J]. 岩土工程学报, 2019, 41(1): 139-147. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901019.htm
SHI Quanbin, YANG Ping, TAN Jinzhong, et al. Development of measuring system by pile-pressing method and experimental study on adfreezing strength at interface between frozen soil and structure[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 139-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901019.htm
|
[1] | Research on the multifactorial influence patterns and resistance mechanisms of frost heave characteristics in conical piles[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240657 |
[2] | WANG Zhongtao, LUO Guangyu, KONG Gangqiang, ZHANG Yu, FAN Zhixian, YANG Qing. Visual centrifugal model tests on capacity of anchor piles and displacement field around piles under oblique pull-out loads[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 189-195. DOI: 10.11779/CJGE20211441 |
[3] | SHE Fang-tao, WU Zheng-qi, ZHOU Wei-zong, LIU Guo-ping, LI Lei. Deformation control of surrounding rock of rectangular pipe-jacking tunnels considering key construction parameters[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 247-253. DOI: 10.11779/CJGE2022S1044 |
[4] | ZHANG Chang-guang, GAO Ben-xian, SHAN Ye-peng, LI Zong-hui. Unified plastic solution for stress and displacement of tunnels in cold regions considering transversely isotropic frost heave[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1825-1831. DOI: 10.11779/CJGE202010007 |
[5] | WANG Teng-fei, LIU Jian-kun, TAI Bo-wen, LÜ Peng. Model tests on frost jacking behaviors of helical steel piles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1084-1092. DOI: 10.11779/CJGE201806014 |
[6] | XIA Yuan-you, CHEN Chen, NI Qing. Pull-out mechanism of continuous ball shape anchors in transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 804-812. DOI: 10.11779/CJGE201705004 |
[7] | CAO Jia-wen, PENG Zhen-bin, PENG Wen-xiang, HE Zhong-ming, WU Qi-hong. Experimental study on mechanical characteristics of inflatable anchors in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1399-1404. |
[8] | ZHOU Yong, ZHU Yan-peng. Influencing factors of horizontal displacement of wall facing of grillage flexible supporting structure with prestressed anchors[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 470. |
[9] | LUO Zhanyou, GONG Xiaonan, ZHU Xiangrong. Soil displacements around jacked group piles based on construction sequence and compacting effects[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 824-829. |
[10] | LIN Hang, CAO Ping, GONG Fengqiang. Analysis of locations and displacement modes of monitoring points in displacement mutation criteria[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1433-1438. |
1. |
宗钟凌,岑航,缪惠全,黄德龙,汤爱平,刘强. 螺旋桩基础动力响应及抗震研究进展. 工业建筑. 2024(02): 133-143 .
![]() | |
2. |
李绪勇,杨忠平,刘纲,李勇华,张益铭. 隔离式螺旋桩抗压承载与抗地基冻融特性. 岩土工程学报. 2024(06): 1187-1196 .
![]() | |
3. |
郎瑞卿,裴璐熹,孙立强,冯守中. 软黏土带压冻融循环下不固结力学特性试验研究. 岩土工程学报. 2024(S2): 43-48 .
![]() | |
4. |
李聪,谢天,吴亮亮,张新宙,赵凯艺. 锚固裂隙岩体冻融试件拉拔试验研究. 红水河. 2024(05): 128-134 .
![]() | |
5. |
高明德,庾思黎,叶永明,周为华. 大小螺旋锚组合型基础现场试验研究. 工业建筑. 2023(S1): 539-542 .
![]() |