• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Xuyong, YANG Zhongping, LIU Gang, LI Yonghua, ZHANG Yiming. Characteristics of compressive bearing capacity and resistance to foundation freeze-thaw of the isolation helical pile[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1187-1196. DOI: 10.11779/CJGE20230209
Citation: LI Xuyong, YANG Zhongping, LIU Gang, LI Yonghua, ZHANG Yiming. Characteristics of compressive bearing capacity and resistance to foundation freeze-thaw of the isolation helical pile[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1187-1196. DOI: 10.11779/CJGE20230209

Characteristics of compressive bearing capacity and resistance to foundation freeze-thaw of the isolation helical pile

More Information
  • Received Date: March 12, 2023
  • Available Online: May 29, 2023
  • Based on the isolation helical piles designed to resist vertical loads and eliminate the effects of freeze-thaw of foundation, the characteristics of force evolution, load transfer, and foundation response of two typical types of helical piles (S/D < S/Dcr and S/DS/Dcr) during settlement, as well as the influences and mechanisms of pile geometries on the bearing capacity of the single pile are revealed from the perspective of pile force. Furthermore, the performance of the new piles against freeze-thaw deformation of foundation is examined. The results show that: (1) The bottom helixes and the lower pile bodies of the two typical piles share the same stress characteristics during the settlement, whereas the stress magnitude and evolution characteristics of end resistances of the remaining upper helixes and side friction resistances of inter-helixe piles differ significantly. (2) The end resistance of each helix of piles with S/DS/Dcr is essentially equal, and the additional stress that the helixes exert on the underlying soil significantly enhances the side friction of piles. This also determines the top-down near-exponential decay trend of the pile side frictional resistance between the helixes. The end resistances of the upper helixes are only about 1/5 of the bottom ones for the piles with S/D < S/Dcr. (3) The compressive bearing capacities of the two types of piles all grow linearly as the embedment ratio, helix diameter and helix number increase, and linearly increase first and then decrease rapidly with the increment of pile diameters. These pile geometries possess heavier impacts on the bearing capacity of piles with S/DS/Dcr. The bearing capacity of piles with S/D < S/Dcr increases significantly with the increase of S/D, whereas that of piles with S/DS/Dcr decreases linearly. (4) The helical pile has a significant advantage over the conventional pile in resisting the impact of freeze-thaw deformation of foundation. The impact can be further eliminated by installing an isolation sleeve on the pile within the frozen soil depth.
  • [1]
    PERKO H A. Helical Piles: a Practical Guide to Design and Installation[M]. Hoboken: J Wiley, 2009.
    [2]
    DEBNATH A, SINGH V P. Analysis and design methods of helical piles: a critical review with emphasis on finite element method[J]. Arabian Journal of Geosciences, 2022, 15(18): 1-31.
    [3]
    郝冬雪, 王磊, 陈榕, 等. 冻融循环下粉砂中螺旋锚抗拔稳定模型试验研究[J]. 岩土工程学报, 2023, 45(1): 57-65. doi: 10.11779/CJGE20211293

    HAO Dongxue, WANG Lei, CHEN Rong, et al. Experimental investigation on uplift stability of helical anchors in silty sand under freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 57-65. (in Chinese) doi: 10.11779/CJGE20211293
    [4]
    王腾飞, 刘建坤, 邰博文, 等. 螺旋桩冻拔特性的模型试验研究[J]. 岩土工程学报, 2018, 40(6): 1084-1092. doi: 10.11779/CJGE201806014

    WANG Tengfei, LIU Jiankun, TAI Bowen, et al. Model tests on frost jacking behaviors of helical steel piles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1084-1092. (in Chinese) doi: 10.11779/CJGE201806014
    [5]
    KHAN U, SIDDIQUA S. Study of compressive loading capacities of helical piles using torque method and induced settlements[J]. Environmental Earth Sciences, 2018, 77(1): 22. doi: 10.1007/s12665-017-7199-z
    [6]
    ELKASABGY M, EL NAGGAR M H. Lateral performance and p-y curves for large-capacity helical piles installed in clayey glacial deposit[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(10): 04019078. doi: 10.1061/(ASCE)GT.1943-5606.0002063
    [7]
    SAKR M. Performance of helical piles in oil sand[J]. Canadian Geotechnical Journal, 2009, 46(9): 1046-1061. doi: 10.1139/T09-044
    [8]
    AYDIN M, BRADKA T D, KORT D A. Osterberg cell load testing on helical piles[C]//Geo-Frontiers 2011. Dallas, 2011.
    [9]
    LUTENEGGER A J. Cylindrical shear or plate bearing? —uplift behavior of multi-helix screw anchors in clay[C]// Contemporary Topics in Deep Foundations. Orlando, 2009.
    [10]
    RAWAT S, GUPTA A K. Numerical modelling of pullout of helical soil nail[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(4): 648-658. doi: 10.1016/j.jrmge.2017.01.007
    [11]
    GEORGE B E, BANERJEE S, GANDHI S R. Numerical analysis of helical piles in cohesionless soil[J]. International Journal of Geotechnical Engineering, 2020, 14(4): 361-375. doi: 10.1080/19386362.2017.1419912
    [12]
    MERIFIELD R S. Ultimate uplift capacity of multiplate helical type anchors in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(7): 704-716. doi: 10.1061/(ASCE)GT.1943-5606.0000478
    [13]
    ARAÚJO P N G, DA SILVA COSTA J P, COSTA Y D J. Numerical study of geometric characteristics of helical piles subjected to uplift[C]// Proceedings of the ⅩⅩⅩⅧ Iberian Latin American Congress on Computational Methods in Engineering. Florianopolis, 2017.
    [14]
    MITTAL S, MUKHERJEE S. Behaviour of group of helical screw anchors under compressive loads[J]. Geotechnical and Geological Engineering, 2015, 33(3): 575-592. doi: 10.1007/s10706-015-9841-4
    [15]
    MOHAJERANI A, BOSNJAK D, BROMWICH D. Analysis and design methods of screw piles: a review[J]. Soils and Foundations, 2016, 56(1): 115-128. doi: 10.1016/j.sandf.2016.01.009
    [16]
    VIGNESH V, MAYAKRISHNAN M. Design parameters and behavior of helical piles in cohesive soils—a review[J]. Arabian Journal of Geosciences, 2020, 13(22): 1194. doi: 10.1007/s12517-020-06165-1
    [17]
    POLISHCHUK A I, MAKSIMOV F A. Improving the design of screw piles for temporary building foundations[J]. Soil Mechanics and Foundation Engineering, 2016, 53(4): 282-285. doi: 10.1007/s11204-016-9399-z
    [18]
    ALWALAN M F, EL NAGGAR M H. Load-transfer mechanism of helical piles under compressive and impact loading[J]. International Journal of Geomechanics, 2021, 21(6): 04021082. doi: 10.1061/(ASCE)GM.1943-5622.0002037
    [19]
    NOWKANDEH M J, CHOOBBASTI A J. Numerical study of single helical piles and helical pile groups under compressive loading in cohesive and cohesionless soils[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(5): 4001-4023. doi: 10.1007/s10064-021-02158-w
    [20]
    杨忠平, 李绪勇, 李诗琪, 等. 一种隔离式抗冻融循环桩及其设计方法: CN113502812A[P]. 2022-05-03.

    YANG Zhongping, LI Xuyong, LI Shiqi, et al. Isolation Type Freeze-Thaw Resistant Circulating Pile and Design Method Thereof: CN113502812A[P]. 2022-05-03. (in Chinese)
    [21]
    白青波, 李旭, 田亚护, 等. 冻土水热耦合方程及数值模拟研究[J]. 岩土工程学报, 2015, 37(增刊2): 131-136. doi: 10.11779/CJGE2015S2026

    BAI Qingbo, LI Xu, TIAN Yahu, et al. Equations and numerical simulation for coupled water and heat transfer in frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 131-136. (in Chinese) doi: 10.11779/CJGE2015S2026
    [22]
    李洪升, 刘增利, 梁承姬. 冻土水热力耦合作用的数学模型及数值模拟[J]. 力学学报, 2001(5): 621-629. doi: 10.3321/j.issn:0459-1879.2001.05.005

    LI Hongsheng, LIU Zengli, LIANG Chengji. Mathematical model for coupled moisture, heat and stress field and numerical simulation of frozen soil[J]. Acta Mechanica Sinica, 2001(5): 621-629. (in Chinese) doi: 10.3321/j.issn:0459-1879.2001.05.005
    [23]
    王晓刚. 冻土区桩土体系冻胀融沉特性研究[D]. 西安: 西安科技大学, 2019.

    WANG Xiaogang. Study on Characteristics of Frost Heave and Thawing Settlement of Pile-Soil System in Permafrost Regions[D]. Xi'an: Xi'an University of Science and Technology, 2019. (in Chinese)
    [24]
    龚晓南. 桩基工程手册[M]. 2版. 北京: 中国建筑工业出版社, 2016.

    GONG Xiaonan. Handbook of Pile Foundation Engineering[M]. 2nd ed. Beijing: China Architecture & Building Press, 2016. (in Chinese)
  • Cited by

    Periodical cited type(8)

    1. 张奥宇,杨科,池小楼,张杰. 基于GA-BP神经网络岩石单轴抗压强度预测模型研究. 煤. 2025(01): 6-10+17 .
    2. 宋超,赵腾远. 黏土路基回弹模量预测及贝叶斯模型选择研究. 长沙理工大学学报(自然科学版). 2024(01): 88-99 .
    3. 王彦武,郭青林,赵腾远,张燕芳,刘晓颖,裴强强,朱毓. 基于温度补偿的5TE传感器含水率监测数据校正方法研究. 石窟与土遗址保护研究. 2024(01): 4-16 .
    4. 陈朗,陈娱,何俊霖,吕淑宁. 基于前期累积降雨和高斯过程回归模型的滑坡位移预测. 岩石力学与工程学报. 2024(S1): 3491-3497 .
    5. 郑可馨,吴益平,李江,苗发盛,柯超. 基于高斯过程回归的岩体结构面粗糙度系数预测模型. 地质科技通报. 2024(04): 252-261 .
    6. 刘杰. 基于高斯过程时间序列回归最优核函数和历史点数的锚杆支护钻进压力预测. 煤炭学报. 2024(S1): 92-107 .
    7. 原钢,刘杰. 基于多参数输入与输出高斯过程回归的锚杆支护状态预测. 液压气动与密封. 2023(11): 47-50 .
    8. 赵腾远,宋超,谌文武,郭志谦,许领. 基于k-means聚类与高斯过程分类的土遗址裂隙病害发育等级概率预测. 石窟与土遗址保护研究. 2023(04): 75-86 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return