• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Chang-guang, GAO Ben-xian, SHAN Ye-peng, LI Zong-hui. Unified plastic solution for stress and displacement of tunnels in cold regions considering transversely isotropic frost heave[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1825-1831. DOI: 10.11779/CJGE202010007
Citation: ZHANG Chang-guang, GAO Ben-xian, SHAN Ye-peng, LI Zong-hui. Unified plastic solution for stress and displacement of tunnels in cold regions considering transversely isotropic frost heave[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1825-1831. DOI: 10.11779/CJGE202010007

Unified plastic solution for stress and displacement of tunnels in cold regions considering transversely isotropic frost heave

More Information
  • Received Date: January 12, 2020
  • Available Online: December 07, 2022
  • The unified strength theory is used as a yield criterion to determine the plastic state of frozen surrounding rock of tunnels in cold regions. Taking comprehensive influences of the intermediate principal stress effect and transversely isotropic frost heave on the strength of frozen surrounding rock into account, a unified analytical plastic solution for the stress and displacement of tunnels in cold regions is proposed. A method is then introduced to address the plastic state of frozen surrounding rock. Furthermore, discussions, verifications and parametric studies of the proposed solution are performed. It is found herein that the validity of the unified solution is demonstrated by comparing with the results from Mohr-Coulomb criterion and circumscribed Drucker-Prager criterion available in the reference, thus it is of extensive theoretical significance and good engineering application prospect. The intermediate principal stress has a significant impact on the displacement of frozen surrounding rock, and then more rock strength potentialities are achieved. The frost-heave force increases with the increase of the anisotropic frost-heave coefficient and the volumetric frost-heave strain. It results in that the stability of tunnels in cold regions decreases, and effective insulation measures are taken to reduce the frost-heave effect of the surrounding rock. The result of this study can provide some theoretical suggestions for the design of tunnels in cold regions.
  • [1]
    LAI Y M, WU H, WU Z W. Analytical viscoelastic solution for frost force in cold-region tunnels[J]. Cold Regions Science and Technology, 2000, 31(3): 227-234. doi: 10.1016/S0165-232X(00)00017-3
    [2]
    GAO G Y, CHEN Q S, ZHANG Q S, et al. Analytical elastic-plastic solution for stress and plastic zone of surrounding rock in cold region tunnels[J]. Cold Regions Science and Technology, 2012, 72(1): 50-57.
    [3]
    FENG Q, JIANG B S, ZHANG Q, et al. Analytical elasto-plastic solution for stress and deformation of surrounding rock in cold region tunnels[J]. Cold Regions Science and Technology, 2014, 108: 59-68. doi: 10.1016/j.coldregions.2014.08.001
    [4]
    甄田田. 基于黏弹塑性理论的冻结壁与井壁共同作用机理分析[D]. 合肥: 安徽理工大学, 2017.

    ZHEN Tian-tian. Analysis of Interaction Mechanism Between Freezing Wall and Shaft Lining Based on Visco-Elastic-Plastic Theory[D]. Hefei: Anhui University of Science and Technology, 2017. (in Chinese)
    [5]
    夏才初, 李强, 吕志涛, 等. 各向均匀与单向冻结条件下饱和岩石冻胀变形特性对比试验研究[J]. 岩石力学与工程学报, 2018, 37(2): 274-281. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201802002.htm

    XIA Cai-chu, LI Qiang, LÜ Zhi-tao, et al. Comparative experimental study on frost deformation characteristics of saturated rock under uniform freezing and uni-directional freezing conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 274-281. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201802002.htm
    [6]
    LÜ Z T, XIA C C, LI Q, et al. Empirical frost heave model for saturated rock under uniform and unidirectional freezing conditions[J]. Rock Mechanics and Rock Engineering, 2019, 52(3): 955-963. doi: 10.1007/s00603-018-1666-z
    [7]
    XIA C C, LÜ Z T, LI Q, et al. Transversely isotropic frost heave of saturated rock under unidirectional freezing condition and induced frost heaving force in cold region tunnels[J]. Cold Regions Science and Technology, 2018, 152: 48-58. doi: 10.1016/j.coldregions.2018.04.011
    [8]
    LÜ Z T, XIA C C, WANG Y S, et al. Analytical elasto-plastic solution of frost heaving force in cold region tunnels considering transversely isotropic frost heave of surrounding rock[J]. Cold Regions Science and Technology, 2019, 163: 87-97. doi: 10.1016/j.coldregions.2019.04.008
    [9]
    YANG Y G, GAO F, LAI Y M. Modified Hoek-Brown criterion for nonlinear strength of frozen soil[J]. Cold Regions Science and Technology, 2013, 86: 98-103. doi: 10.1016/j.coldregions.2012.10.010
    [10]
    CHEN D, WANG D, MA W, et al. A strength criterion for frozen clay considering the influence of stress Lode angle[J]. Canadian Geotechnical Journal, 2018, 56(11): 1557-1572.
    [11]
    LIU X Y, LIU E L. Application of new twin-shear unified strength criterion to frozen soil[J]. Cold Regions Science and Technology, 2019, 167: 102857. doi: 10.1016/j.coldregions.2019.102857
    [12]
    俞茂宏. 岩土类材料的统一强度理论及其应用[J]. 岩土工程学报, 1994, 16(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC402.000.htm

    YU Mao-hong. Unified strength theory for geomaterials and its applications[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC402.000.htm
    [13]
    俞茂宏. 双剪理论及其应用[M]. 北京: 科学出版社, 1998.

    YU Mao-hong. Twin-Shear Theory and Its Application[M]. Beijing: Science Press, 1998. (in Chinese)
    [14]
    ZHANG C G, ZHAO J H, ZHANG Q H, et al. A new closed-form solution for circular openings modeled by the Unified Strength Theory and radius-dependent Young's modulus[J]. Computers and Geotechnics, 2012, 42: 118-128. doi: 10.1016/j.compgeo.2012.01.005
    [15]
    张常光, 祁航, 蔡明明, 等. 基于统一强度理论的煤层平动冲击失稳解答[J]. 煤炭学报, 2019, 44(8): 2589-2595. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908034.htm

    ZHANG Chang-guang, QI Hang, CAI Ming-ming, et al. Instability solution of translatory coal seam bumps based on the unified strength theory[J]. Journal of China Coal Society, 2019, 44(8): 2589-2595. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908034.htm
  • Related Articles

    [1]CAO Xiaolin, ZHOU Fengxi, DAI Guoliang. Dynamic response analysis of saturated soils and single pile under horizontal loads[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 73-78. DOI: 10.11779/CJGE2023S20004
    [2]HUANG Juan, HU Zhongwei, YU Jun, LI Dongkai. Pile-top impedance of pile foundation in liquefied soil based on viscous fluid mechanics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1063-1071. DOI: 10.11779/CJGE20220322
    [3]WANG Zhi-hua, HE Jian, GAO Hong-mei, WANG Bing-hui, SHEN Ji-rong. Dynamic pore water pressure model for liquefiable soils based on theory of thixotropic fluid[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2332-2340. DOI: 10.11779/CJGE201812023
    [4]LUAN Lu-bao, DING Xuan-ming, LIU Han-long, ZHENG Chang-jie. Analytical solution of lateral dynamic response of a large diameter pipe pile considering influence of axial load[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1859-1868. DOI: 10.11779/CJGE201610015
    [5]AI Zhi-yong, LI Zhi-xiong. Horizontal vibration of a pile group in transversely isotropic layered soils under scour conditions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 613-618. DOI: 10.11779/CJGE201604004
    [6]ZHENG Chang-jie, LIU Han-long, DING Xuan-ming, FU Qiang. Analytical solution of horizontal vibration of cast-in-place large-diameter pipe piles in saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1447-1454. DOI: 10.11779/CJGE201408010
    [7]YU Jun, SHANG Shouping, LI Zhong, REN Hui, ZENG Yulin. Dynamical characteristics of an end bearing pile embedded in saturated soil under horizontal vibration[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 408-415.
    [8]SHANG Shouping, YU Jun, WANG Haidong, REN Hui. Horizontal vibration of piles in saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1696-1702.
    [9]HU Changbin, ZHANG Tao. Study on soil-pile interaction in torsional vibrations[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 184-190.
    [10]HUANG Maosong, WU Zhiming, REN Qing. Lateral vibration of pile groups in layered soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 32-38.
  • Cited by

    Periodical cited type(5)

    1. 张硕,张翰清,张昕,姜彤,吴嘉绪,杨创维. 动水驱动作用下边坡灾变防控研究综述. 人民长江. 2025(02): 134-143+151 .
    2. 范钢伟,骆韬,张东升,张世忠,范张磊. 碱水作用下弱胶结粉砂岩孔隙结构分形特征与非线性劣化机制. 中国矿业大学学报. 2024(01): 34-45 .
    3. 蔡国军,田宏亮,刘路路,刘晓燕,章荣军. 复杂环境下膨胀土工程特性演化特征研究进展. 应用基础与工程科学学报. 2024(06): 1511-1537 .
    4. 刘剑,关钰荣,王会昊,邵振宝,徐兴倩. 水土化学力学效应研究现状与展望. 科学技术与工程. 2023(10): 4019-4032 .
    5. 肖桂元,裴心成,刘冲,刘闯,刘芠君. 酸雨对丹江口库区膨胀土变形和微观结构影响研究. 青海大学学报. 2023(04): 86-91 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return