• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YU Dong-ming, YAO Hai-lin, LU Zheng, LUO Xing-wen. Elastoplastic solutions to deep-buried circular tunnels in transversely isotropic rock masses considering intermediate principal stress[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1850-1857.
Citation: YU Dong-ming, YAO Hai-lin, LU Zheng, LUO Xing-wen. Elastoplastic solutions to deep-buried circular tunnels in transversely isotropic rock masses considering intermediate principal stress[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1850-1857.

Elastoplastic solutions to deep-buried circular tunnels in transversely isotropic rock masses considering intermediate principal stress

More Information
  • Received Date: October 23, 2011
  • Published Date: November 13, 2012
  • The influence of intermediate principal stress is usually ignored for the problem of a deep-buried circular traffic tunnel under plane strain condition. But the deformation of surrounding rocks in plastic area has greater error. A number of layered rock masses occur in geotechnical and underground engineering and they are often treated as the transversely isotropic solid materials. To consider the influence of the intermediate principal stress on deep-buried circular tunnels, plane strain hypothesis is given and the new Drucker-Prager criterion compatible with the transversely isotropic materials is obtained. Then Mohr-Coulomb criterion is precisely matched to the new Drucker-Prager criterion. The analytical expression of the intermediate principal stress in plastic state for the transversely isotropic perfect elastoplastic materials with dilatancy is deduced based on the criterion. According to the expression of the intermediate principal stress, the analytical expressions of the displacement and stress in plastic area for a deep-buried circular tunnel in transversely isotropic rock masses can be obtained. A practical engineering case is given and the regularities that transversely isotropic parameters and dilation angle act on the displacements in the plastic area of the deep-buried circular highway tunnel in transversely rock masses are discussed. So, the elastoplastic solutions may provide a more reasonable theoretic basis for the calculation and design of the deep-buried circular traffic tunnels.
  • [1]
    JAEGER J C, COOK N G W. Fundamentals of rock mechanics[M]. London: Chapman and Hall, 1978.
    [2]
    于学馥, 郑颖人, 刘怀恒, 等. 地下工程围岩稳定分析[M]. 北京: 煤炭工业出版社, 1983. (YU Xue-fu, ZHENG Ying-ren, LIU Huai-heng, et al. Stability analysis of the surrounding rock mass in underground engineering[M]. Beijing: China Coal Industry Publishing House, 1983. (in Chinese))
    [3]
    俞茂宏, 杨松岩, 刘春阳, 等. 统一平面应变滑移线场理论[J]. 土木工程学报, 1997, 30(2): 14–26, 41. (YU Mao-hong, YANG Song-yan, LIU Chun-yang, et al. Unified plane-strain slip line field theory system[J]. China Civil Engineering Journal, 1997, 30(2): 14–26, 41. (in Chinese))
    [4]
    XU S Q, YU M H. The effect of the intermediate principal stress on the ground response of circular openings in rock mass[J]. Rock Mechanics and Rock Engineering, 2006, 39(2): 169–181.
    [5]
    ZHOU X P, YANG H Q, ZHANG Y X, et al. The effect of the intermediate principal stress on the ultimate bearing capacity of a foundation on rock mass[J]. Computers and Geotechnics, 2009, 36: 861–870.
    [6]
    蔡晓鸿, 蔡勇斌, 蔡勇平, 等. 考虑中间主应力影响的压力隧洞围岩抗力系数通用计算式[J]. 岩土工程学报, 2007, 29(7): 1004–1008. (CAI Xiao-hong, CAI Yong-bin, CAI Yong-ping, et al. Calculation of resistance coefficient of adjoining rock for pressure tunnels considering effect of intermediate principal stress[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1004–1008. (in Chinese))
    [7]
    张 健, 胡瑞林, 余文龙, 等. 考虑中主应力影响倾斜填土面朗肯土压力参数的敏感性分析[J]. 岩土工程学报, 2010, 32(10): 1566–1572. (ZHANG Jian, HU Rui-lin, YU Wen-long, et al. Sensitivity analysis of parameters of Rankine’s earth pressure with inclined surface considering intermediate principal stress[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10): 1566–1572. (in Chinese))
    [8]
    邓楚键, 郑颖人, 朱建凯. 平面应变条件下M-C材料屈服时的中主应力公式[J]. 岩土力学, 2008, 29(2): 310–314. (DENG Chu-jian, ZHENG Ying-ren, ZHU Jian-kai. Formula of intermediate principal stress at failure for Mohr-Coulomb material in plane strain state[J]. Rock and Soil Mechanics, 2008, 29(2): 310–314. (in Chinese))
    [9]
    赵春风, 杨砚宗, 张常光, 等. 考虑中主应力的常用破坏准则适用性研究[J]. 岩石力学与工程学报, 2011, 30(2): 327–334. (ZHAO Chun-feng, YANG Yan-zong, ZHANG Chang-guang, et al. Investigation on applicability of common failure criteria considering intermediate principal stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 327–334. (in Chinese))
    [10]
    LEKHNISKII S G. Theory of elasticity of anisotropic body[M]. Moscow: Mir Pub, 1981.
    [11]
    TIEN Y M, KUO M C. A failure criterion for transversely isotropic rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38: 399–412.
    [12]
    TIEN Y M, KUO M C, JUANG C H. An experimental investigation of the failure mechanism of simulated transversely isotropic rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43: 1163–1181.
    [13]
    LEE Y K, PIETRUSZCZAK S. Application of critical plane approach to the prediction of strength anisotropy in transversely isotropic rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45: 513–523.
    [14]
    张志增, 李仲奎, 许梦国. 横观各向同性岩体中深埋圆形巷道的位移解析解[J]. 黄金, 2010, 31(3): 23–26. (ZHANG Zhi-zeng, LI Zhong-kui, XU Meng-guo. Displacement analytic solution of deep buried circular tunnel in transverse isotropy rock mass[J]. Gold, 2010, 31(3): 23–26. (in Chinese))
    [15]
    张志增, 李仲奎. 横观各向同性岩体中圆形巷道反分析的惟一性[J]. 岩土力学, 2011, 32(7): 2066–2072. (ZHANG Zhi-zeng, LI Zhong-kui. Uniqueness of displacement back analysis of a circular tunnel in transversely isotropic rock mass[J]. Rock and Soil Mechanics, 2011, 32(7): 2066–2072. (in Chinese))
    [16]
    贾乃文. 岩土工程中横观各向同性Drucker屈服准则[J]. 华南理工大学学报(自然科学版), 1993, 21(2): 49–54. (JIA Nai-wen. Drucker yield criterion of horizontally isotropic rock and soil[J]. Journal of South China University of Technology (Natural Science), 1993, 21(2): 49–54. (in Chinese))
    [17]
    贾乃文.横观各向同性Drucker屈服准则[J]. 应用力学学报, 1997, 14(3): 141–144. (JIA Nai-wen. Drucker yield criterion of horizontally isotropic material[J]. Chinese Journal of Applied Mechanics, 1997, 14(3): 141–144. (in Chinese))
    [18]
    张学言, 闫澍旺. 岩土塑性力学基础[M]. 2版. 天津: 天津大学出版社, 2006. (ZHANG Xue-yan, YAN Shu-wang. Fundamentals of geotechnics plasticity[M]. 2nd ed. Tianjin: Tianjin University Press, 2006. (in Chinese))
    [19]
    卡斯特奈 H. 隧道与坑道静力学[M]. 上海: 上海科学技术出版社, 1980. (KASTNER H. Static mechanics of tunnel[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1980. (in Chinese))
    [20]
    CHEN W F, SALEEB A F. Elasticity and plasticity[M]. Beijing: China Architecture and Building Press, 2005.
  • Related Articles

    [1]YANG Jiaqi, LIU Donghai, WANG Zefan. Permeability and strain-stress characteristics of phase-change clay under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2584-2593. DOI: 10.11779/CJGE20221143
    [2]TANG Yang, ZHENG Ming-fei, SHI Shi-yong. Model tests on thermal response of phase-change pile in saturated silt foundation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 139-142. DOI: 10.11779/CJGE2022S2030
    [3]ZENG Zhao-jun, TANG Chao-sheng, CHENG Qing, AN Ni, SHI Bin. Influences of water phase change/migration factors in hydro-thermal coupling model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 40-45. DOI: 10.11779/CJGE2022S1008
    [4]XIAO Ze-an, ZHU Lin-ze, HOU Zhen-rong, DONG Xiao-qiang. Effects of water/salt phase transition on matric suction of sulfate saline soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1935-1941. DOI: 10.11779/CJGE202210020
    [5]HUANG Ying-hao, CHEN Yong, ZHU Xun, WU Zhi-qiang, ZHU Rui, WANG Shuo, WU Min. Experimental study and micro-mechanism analysis of freeze-thaw performance of expansive soils improved by phase-change materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1994-2002. DOI: 10.11779/CJGE202111005
    [6]XIAO Ze-an, HOU Zhen-rong, DONG Xiao-qiang. Phase transition of pore solution in saline soil during cooling process[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1174-1180. DOI: 10.11779/CJGE202006024
    [7]TENG Ji-dong, HE Zuo-yue, ZHANG Sheng, SHENG Dai-chao. Moisture transfer and phase change in unsaturated soils: physical mechanism and numerical model for two types of “canopy effect”[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1813-1821. DOI: 10.11779/CJGE201610010
    [8]ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939.
    [9]WANG Zhi-hua, ZHOU En-quan, CHEN Guo-xing, GAO Hong-mei. Characteristics of solid-liquid phase change of saturated sand under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1604-1610.
    [10]Guo Li, Miao Tiande, Zhang Hui, Niu Yonghong. Thermodynamic models of heat moisture migration in saturated freezing soil[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(5): 90-94.

Catalog

    Article views (1061) PDF downloads (361) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return