• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Ming-jing, LI Chen-hui, LIU Wei, ZHANG An, ZHANG Xue-wen. Extension and compression tests mechanical behaviors of bonded granules with different bond widths[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 12-16. DOI: 10.11779/CJGE2018S2003
Citation: JIANG Ming-jing, LI Chen-hui, LIU Wei, ZHANG An, ZHANG Xue-wen. Extension and compression tests mechanical behaviors of bonded granules with different bond widths[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 12-16. DOI: 10.11779/CJGE2018S2003

Extension and compression tests mechanical behaviors of bonded granules with different bond widths

More Information
  • Received Date: July 21, 2018
  • Published Date: October 29, 2018
  • In order to establish a new bond failure criterion considering different bonded widths to be used in three-dimensional distinct element modelling, another three kinds of bond widths (i.e., 8, 12 and 14 mm) between granules are investigated based on the previous work. Then, a series of extension and compression tests are carried out on cemented aluminum balls with three different bond widths, from which the bond failure criteria are obtained considering different bonded widths under tension and compression. The test results show that the tensile and compressive strengths both increase non-linearly with the bond width. The curves of the relationship between the tension and normal displacement exhibit elastic brittle failure. However, those between the compression and normal displacement are influenced by the bond width. The curves more probably show plastic failure if the bond width is larger, while those of the specimens with smaller bond width more probably show brittle-plastic failure.
  • [1]
    CUCCOVILLO T, COOP M.On the mechanics of structured sands[J]. Géotechnique, 1999,49(6): 741-760.
    [2]
    COOP M R, ATKINSON J H.The mechanics of cemented carbonate sands[J]. Géotechnique, 1993, 43(1): 53-67.
    [3]
    HUANG J T, AIREY D W.Properties of artificially cemented carbonate sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(6): 492-499.
    [4]
    CUNDALL P A, STRACK O D L. The distinct numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
    [5]
    POTYONDY D O, CUNDALL P A.A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364.
    [6]
    OBERMAYR M, DRESSLER K, VRETTOS C, et al.A bonded-particle model for cemented sand[J]. Computers and Geotechnics, 2013, 49(49): 299-313.
    [7]
    JIANG M J, YU H S, HARRIS D.Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 30(8): 723-761.
    [8]
    DELENNE J Y, YOUSSOUFI M S E, CHERBLANC F, et al. Mechanical behaviour and failure of cohesive granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(15): 1577-1594.
    [9]
    MULLER P, TOMAS J.Investigation on the compression behavior of tetrahedral agglomerates[J]. ChemieIngenieur Technik, 2015, 87(7): 966-975.
    [10]
    蒋明镜, 孙渝刚, 李立青. 复杂应力下两种胶结颗粒微观力学模型的试验研究[J]. 岩土工程学报, 2011, 33(3): 354-360.
    (JIANG Ming-jing, SUN Yu-gang, LI Li-qing.Experimental study on micro-mechanical model for two different bonded granules under complex stress conditions[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 354-360. (in Chinese))
    [11]
    蒋明镜, 周雅萍, 陈贺. 不同胶结厚度下粒间胶结力学特性的试验研究[J]. 岩土力学, 2013, 34(5): 1264-1273.
    (JIANG Ming-jing, ZHOU Ya-ping, CHEN He.Experimental study of mechanical behaviors of bonded granules under different bond thicknesses[J]. Rock and Soil Mechanics, 2013, 34(5): 1264-1273. (in Chinese))
    [12]
    蒋明镜, 张宁, 金树楼. 不同胶结宽度粒间胶结特性试验研究[J]. 岩土力学, 2015, 36(4): 928-936.
    (JIANG Ming-jing, ZHANG Ning, JIN Shu-lou.Experimental study of mechanical behaviors of bonded granules with different bond widths[J]. Rock & Soil Mechanics, 2015, 36(4): 928-936. (in Chinese))
    [13]
    蒋明镜, 金树楼, 刘蔚, 等. 粒间胶结接触力学特性的三维试验研究[J]. 岩土力学, 2015, 36(增刊1): 9-13.
    (JIANG Ming-jing, JIN Shu-lou, LIU Wei, et al.three-dimensional experimental study of mechanical behaviors of bonded granules[J]. Rock & Soil Mechanics, 2015, 36(S1): 9-13. (in Chinese))
    [14]
    金树楼. 结构性砂土三维微观接触力学试验及离散元数值模拟[D]. 上海: 同济大学, 2016.
    (JIN Shu-lou.Three dimension experimental and numerical study on micro-and macro- mechanical behavior of structural sands[D]. Shanghai: Tongji University, 2016. (in Chinese))
    [15]
    张宁. 岩石化学风化微观机理及岩质边坡稳定性的离散元分析[D]. 上海: 同济大学, 2014.
    (ZHANG Ning.DEM analysis of the micro-mechanical behavior of chemical weathering on the rock and stability of rock slope[D]. Shanghai: Tongji University, 2014. (in Chinese))
    [16]
    申志福. 深海能源土力学特性三维多尺度数值模拟[D]. 上海: 同济大学, 2016.
    (SHEN Zhi-fu.Three-dimensional muti-scale numerical simulations of the mechanical behavior of methane hydrate bearing sediments[D]. Shanghai: Tongji University, 2016. (in Chinese))
  • Related Articles

    [1]LIANG Xiaomin, GU Xiaoqiang, ZHAI Chongpu, WEI Deheng. Anisotropic wave velocities of granular materials and microscopic fabric using X-ray computed tomography[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1398-1407. DOI: 10.11779/CJGE20230425
    [2]ZHANG He-nian, CHEN Liang, LI Xiong-wei, XI Pei-sheng, MU Lin, HU Cai-yun. Ratio and mechanism of activated magnesium oxide carbonized raw earth block materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 233-236. DOI: 10.11779/CJGE2021S2055
    [3]YAO Jun-kai, YE Yang-sheng, WANG Peng-cheng, CHEN Feng, CAI De-gou. Subgrade heave of sulfate attacking on cement-stabilized filler[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 782-788. DOI: 10.11779/CJGE201904024
    [4]XU Xiao-li, GAO Feng, ZHANG Zhi-zhen, ZHANG Chuan-hu. Energy and structural effects of granite after high temperature[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 961-968. DOI: 10.11779/CJGE201405022
    [5]ZHOU Qiao-yong, XIONG Bao-lin, YANG Guang-qing, LIU Wei-chao. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 439-444.
    [6]YU Hui, DING Xuan-ming, KONG Gang-qiang, ZHENG Chang-jie. Comparative FEM analysis of deformation properties of expressway widening projects with cast-in-situ X-shaped concrete piles and circular pile[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 170-176.
    [7]WANG Cheng-hu, WANG Hong-cai, LIU Li-peng, SUN Dong-sheng, ZHAO Wei-hua. Effects of high temperatures on mechanical performance of basaltic tuff and mechanism analysis[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1827-1835.
    [8]Micro-experiments on a soft ground improved by cement-mixed soils with gypsum additive[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8).
    [9]Full scale model tests on vertical bearing characteristics of cast-in-place X-section piles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
    [10]WU Yanqing, CAO Guangzhu, DING Weihua. Permeability experiment of sandstone under variable seepage pressures by using X-ray CT real-time observation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 780-785.
  • Cited by

    Periodical cited type(4)

    1. 王大兵,黄郁东,韩振中,徐考,崔文海,周苏华. 基于贝叶斯逻辑回归模型的边坡稳定性预测. 市政技术. 2023(10): 173-180 .
    2. 曾锃,赵树祥,葛龙进,潘卫平,李敏,殷国峰. 罗闸河二级水电站拱坝右岸边坡变形破坏机制研究及治理后评估. 岩土工程学报. 2021(S1): 171-175 . 本站查看
    3. 夏增选,李萍,曹博,李同录,沈伟,康海伟. 边坡可靠度的Bayes估计及后验稳健性. 河海大学学报(自然科学版). 2020(03): 238-244 .
    4. 谢永利,刘新荣,晏长根,杨忠平,李家春,周志军,岳夏冰. 特殊岩土体工程边坡研究进展. 土木工程学报. 2020(09): 93-105 .

    Other cited types(18)

Catalog

    Article views (235) PDF downloads (126) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return