• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Wei-jiang, SU Xing, YE Wei-lin, WEI Wan-hong, YANG Tao, FENG Le-tao. Lateral pressure in formation of saturated loess landslide——Case study of Heifangtai, Gansu Province[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 135-140. DOI: 10.11779/CJGE2018S1022
Citation: WU Wei-jiang, SU Xing, YE Wei-lin, WEI Wan-hong, YANG Tao, FENG Le-tao. Lateral pressure in formation of saturated loess landslide——Case study of Heifangtai, Gansu Province[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 135-140. DOI: 10.11779/CJGE2018S1022

Lateral pressure in formation of saturated loess landslide——Case study of Heifangtai, Gansu Province

More Information
  • Received Date: February 23, 2018
  • Published Date: August 24, 2018
  • Due to the long-term infiltration effect of agricultural irrigation water, more than 130 landslides have been found since 1984 in the Heifangtai loess tableland, Gansu Province. Among them, more than 90% of landslides can be classified into the homogeneous loess ones. The formation mechanism is unique. Generally, the irrigation water can permeate the loess body and gather at the bottom of loess layer to form a saturated weak base with more than 20 m in thickness. The corresponding shear strength and compressive strength of this base layer are reduced greatly, while the deformation capacity increases. Under the loading impact of overburden, the saturated loess base layer will exhibit the phenomenon of severe plastic deformation towards the outside of the slope. Moreover, the relatively large lateral pressure can be generated in the saturated loess area at the back of the landslide and horizontally act on the front slope to cause deformation damage, and then results in the high-speed slipping, which is another one of the power sources to induce the saturated loess landslide. The observated data from the in-situ investigation show that the lateral pressure of soils is mainly generated in the saturated loess layer below 23.5 m, and it can reach 30~230 kPa in Heifangtai loess terrace area. The horizontal thrust may increase with the growth of depth, and can even reach as high as 2236 kN/m. In the case of the Luojiapo landslide which occurred on 29th, April, 2015, its the stability coefficient is 1.12 when the lateral pressure is not taken into account, while it is reduced to 0.94 due to the effect of lateral pressure. Therefore, it can be concluded that the lateral pressure generated in the saturated loess layer at the back of landslide plays an important role in the formation of saturated loess landslide.
  • [1]
    王家鼎. 高速黄土滑坡的一种机理—饱和黄土蠕动液化[J]. 地质论评, 1992, 38(6): 532-539.
    (WANG Jia-ding.A mechanism of high-speed loess landslides-saturated loess creeping liquefaction[J]. Geological Review, 1992, 38(6): 532-539. (in Chinese))
    [2]
    许领, 戴福初, 邝国麟, 等. 黑方台黄土滑坡类型与发育规律[J]. 山地学报, 2008, 26(3): 364-371.
    (XU Ling, DAI Fu-chu, KUANG Guo-lin, et al.Types and characteristics of loess landslides at Heifangtai Loess Plateau, China[J]. Journal of Mountain Science, 2008, 26(3): 364-371. (in Chinese))
    [3]
    武彩霞, 许领, 戴福初, 等. 黑方台黄土泥流滑坡及发生机制研究[J]. 岩土力学, 2011, 32(6): 1767-1773.
    (WU Cai-xia, XU Ling, DAI Fu-chu, et al.Topographic features and initiation of earth flows on Heifangtai loess plateau[J]. Rock and Soil Mechanics, 2011, 32(6): 1767-1773. (in Chinese))
    [4]
    吴玮江, 王念秦. 甘肃滑坡灾害[M]. 兰州: 兰州大学出版社, 2006.
    (WU Wei-jiang, WANG Nian-qin.Landslide hazards in Gansu[M]. Lanzhou: Lanzhou University Press, 2006. (in Chinese))
    [5]
    WU Wei-jiang, SU Xing, MENG Xing-min.Characteristics and origin of loess landslides on loess terraces at Heifangtai, Gansu Province, China[J]. Applied Mechanics and Materials, 2014, 694: 455-461.
    [6]
    张茂省. 引水灌区黄土地质灾害成因机制与防控技术—以黄河三峡库区甘肃黑方台移民灌区为例[J]. 地质通报, 2013, 32(6): 833-839.
    (ZHANG Mao-sheng.Formation mechanism as well as prevention and controHing techniques of loess geo-hazards in irrigated areas: a case study of Heifangtai immigration area in the Three Gorges Reservoir of the Yellow River[J]. Geological Bulletin of China, 2013, 32(6): 833-839. (in Chinese))
    [7]
    慕焕东, 宋登艳, 张茂省, 等. 灌溉诱发型黄土滑坡离心模型试验研究[J]. 岩土工程学报, 2016, 38(增刊2): 172-177.
    (MU Huan-dong, SONG Deng-yan, ZHANG Mao-sheng, et al.Centrifuge modelling tests on loess landslides induced by irrigation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2): 172-177. (in Chinese))
    [8]
    许强, 彭大雷, 亓星, 等. 2015年4·29甘肃黑方台党川#2滑坡基本特征与成因机理研究[J]. 工程地质学报, 2016, 24(2): 167-180.
    (XU Qiang, PENG Da-lei, QI Xing, et al.Dangchuan #2 landslide of april 29, 2015 in Heifangtai area of Gansu Province: characteristices and failure mechanism[J]. Journal of Engineering Geology, 2016, 24(2): 167-180. (in Chinese))
    [9]
    WANG Gong-hui, ZHANG De-xuan, GEN Furuya, et al.Pore-pressure generation and fluidization in a loess landslide triggered by the 1920 Haiyuan earthquake, China: a case study[J]. Engineering Geology, 2014, 174: 36-45.
    [10]
    GIANFRANCO Urciuoli, MARIANNA Pirone, LUCA Comegna, et al.Long-term investigations on the pore pressure regime in saturated and unsaturated sloping soils[J]. Engineering Geology, 2016, 212: 98-119.
    [11]
    金艳丽, 戴福初. 饱和黄土的静态液化特性试验研究[J]. 岩土力学, 2008, 29(12): 3293-3298.
    (JIN Yan-li, DAI Fu-chu.Experimental investigation of static liquefaction of saturated loess[J]. Rock and Soil Mechanics, 2008, 29(12): 3293-3298. (in Chinese))
    [12]
    范宣梅, 许强, 张倬元, 等. 平推式滑坡成因机制研究[J]. 岩石力学与工程学报, 2008, 27(增刊2): 3753-3759.
    (FAN Xuan-mei, XU Qiang, ZHANG Zhuo-yuan, et al.Study on genetic mechanism of translational landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S2): 3753-3759. (in Chinese))
    [13]
    陈忠达. 公路挡土墙设计[M]. 北京: 人民交通出版社, 1999.
    (CHEN Zhong-da.Design of highway retaining wall[M]. Beijing: China Communications Press, 1999. (in Chinese))
    [14]
    吴玮江, 叶伟林, 姚正学, 等. 甘肃永靖黑方台4·29罗家坡黄土滑坡的特征[J]. 冰川冻土, 2016, 38(3): 662-670.
    (WU Wei-jiang, YE Wei-lin, YAO Zheng-xue, et al.Characteristics of the Luojiapo loess landslides at Heifangtai, burst on April 29, 2015, in Yongjing County, Gansu Province[J]. Journal of Glaciology and Geocryology, 2016, 38(3): 662-670. (in Chinese))
    [15]
    DZ/T 0218—2006 滑坡防治工程勘查规范[S]. 2006.
    (DZ/T 0218—2006 Specification of geological investigation for landslide stabilization[S]. 2006. (in Chinese))
    [16]
    吴昊宇, 裴向军, 崔圣华. 灌溉型黄土滑坡变形破坏特征的离心机模型研究[J]. 建筑安全, 2015(5): 40-44.
    (WU Hao-yu, PEI Xiang-jun, CUI Sheng-hua.Deformation and failure characteristics of irrigated loess landslides study on centrifuge model[J]. Construction Safety, 2015(5): 40-44. (in Chinese))
  • Related Articles

    [1]LIANG Xiaomin, GU Xiaoqiang, ZHAI Chongpu, WEI Deheng. Anisotropic wave velocities of granular materials and microscopic fabric using X-ray computed tomography[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1398-1407. DOI: 10.11779/CJGE20230425
    [2]ZHANG He-nian, CHEN Liang, LI Xiong-wei, XI Pei-sheng, MU Lin, HU Cai-yun. Ratio and mechanism of activated magnesium oxide carbonized raw earth block materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 233-236. DOI: 10.11779/CJGE2021S2055
    [3]YAO Jun-kai, YE Yang-sheng, WANG Peng-cheng, CHEN Feng, CAI De-gou. Subgrade heave of sulfate attacking on cement-stabilized filler[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 782-788. DOI: 10.11779/CJGE201904024
    [4]XU Xiao-li, GAO Feng, ZHANG Zhi-zhen, ZHANG Chuan-hu. Energy and structural effects of granite after high temperature[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 961-968. DOI: 10.11779/CJGE201405022
    [5]ZHOU Qiao-yong, XIONG Bao-lin, YANG Guang-qing, LIU Wei-chao. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 439-444.
    [6]YU Hui, DING Xuan-ming, KONG Gang-qiang, ZHENG Chang-jie. Comparative FEM analysis of deformation properties of expressway widening projects with cast-in-situ X-shaped concrete piles and circular pile[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 170-176.
    [7]WANG Cheng-hu, WANG Hong-cai, LIU Li-peng, SUN Dong-sheng, ZHAO Wei-hua. Effects of high temperatures on mechanical performance of basaltic tuff and mechanism analysis[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1827-1835.
    [8]Micro-experiments on a soft ground improved by cement-mixed soils with gypsum additive[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8).
    [9]Full scale model tests on vertical bearing characteristics of cast-in-place X-section piles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
    [10]WU Yanqing, CAO Guangzhu, DING Weihua. Permeability experiment of sandstone under variable seepage pressures by using X-ray CT real-time observation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 780-785.
  • Cited by

    Periodical cited type(4)

    1. 王大兵,黄郁东,韩振中,徐考,崔文海,周苏华. 基于贝叶斯逻辑回归模型的边坡稳定性预测. 市政技术. 2023(10): 173-180 .
    2. 曾锃,赵树祥,葛龙进,潘卫平,李敏,殷国峰. 罗闸河二级水电站拱坝右岸边坡变形破坏机制研究及治理后评估. 岩土工程学报. 2021(S1): 171-175 . 本站查看
    3. 夏增选,李萍,曹博,李同录,沈伟,康海伟. 边坡可靠度的Bayes估计及后验稳健性. 河海大学学报(自然科学版). 2020(03): 238-244 .
    4. 谢永利,刘新荣,晏长根,杨忠平,李家春,周志军,岳夏冰. 特殊岩土体工程边坡研究进展. 土木工程学报. 2020(09): 93-105 .

    Other cited types(18)

Catalog

    Article views (211) PDF downloads (188) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return