• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHU Yan-peng, MA Tao, YANG Xiao-hui, YANG Kui-bin, WANG Hai-ming. Shear strength tests and regression analysis of red sandstone-improved soils based on orthogonal design[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 87-92. DOI: 10.11779/CJGE2018S1014
Citation: ZHU Yan-peng, MA Tao, YANG Xiao-hui, YANG Kui-bin, WANG Hai-ming. Shear strength tests and regression analysis of red sandstone-improved soils based on orthogonal design[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 87-92. DOI: 10.11779/CJGE2018S1014

Shear strength tests and regression analysis of red sandstone-improved soils based on orthogonal design

More Information
  • Received Date: June 10, 2017
  • Published Date: August 24, 2018
  • There are more and more deep foundation pits of subway in Lanzhou area. In order to protect the ecological environment and reduce the project cost, after excavation, adding the cement and loess into the red sandstone is used as the roadbed filler through experiments. Based on a subway project in Lanzhou, the compaction tests and the quick shear tests are carried out on the remolded soil with different mixing ratios by adopting orthogonal tests. The influence factors of the shear strength of the red sandstone-improved soil are analyzed, and the best mix proportion of each factor is given. The regression model for shear strength of red sandstone-improved soil is obtained. The test results indicate that the loess has significant influence on the internal friction angle, and the water content and cement have a significant influence on the cohesion. The order of main influence factors of cohesive force can be arranged as follows: cement→water content→loess, and the order of main influence factors of internal friction angle can be arranged as follows: loess→water content→cement. According to the test data of different mix proportions, the regression equation is established to predict the cohesion and internal friction angle of the improved soils. The results have certain reference value for the evaluation of red sandstone as the backfill material.
  • [1]
    赵明华, 邓觐宇, 曹文贵. 红砂岩崩解特性及其路堤填筑技术研究[J]. 中国公路学报, 2003, 16(3): 1-5.
    (ZHAO Ming-hua, DENG Jin-yu, CAO Wen-gui.Study of the disintegration character of red sandstone and the construction techniques of red sandstone embankment[J]. China Journal of Highway and Transport, 2003, 16(3): 1-5. (in Chinese))
    [2]
    赵明华, 刘晓明, 苏永华. 含崩解软岩红层材料路用工程特性试验研究[J]. 岩土工程学报, 2005, 27(6): 667-671.
    (ZHAO Ming-hua, LIU Xiao-ming, SU Yong-hua.Experimental studies on engineering properties of red bed material containing slacking rock[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 667-671. (in Chinese))
    [3]
    董泽福, 刘多文. “红砂岩”的路堤用工程性质研究[J]. 湖南大学学报 (自然科学版), 2003, 30(3): 90-93.
    (DONG Ze-fu, LIU Duo-wen.Study on engineering character of “red rock” for embankment[J]. Journal of Hunan University (Natural Sciences Edition), 2003, 30(3): 90-93. (in Chinese))
    [4]
    刘晓明, 熊力, 张亮亮, 等. I类红砂岩崩解性抑制措施试验研究[J]. 公路交通科技, 2011, 28(3): 25-29.
    (LIU Xiao-ming, XIONG Li, ZHANG Liang-liang, et al.Experiment study on inhibition method of slacking properties of class-I red sand stone[J]. Journal of High and Transportation Research and Development, 2011, 28(3): 25-29. (in Chinese))
    [5]
    杨庆, 贺洁, 栾茂田. 非饱和红黏土和膨胀土抗剪强度的比较研究[J]. 岩土力学, 2003, 24(1): 13-16.
    (YANG Qing, HE Jie, LUAN Mao-tian.Comparative study on shear strength of unsaturated red clay and expansive soils[J]. Rock and Soil Mechanics, 2003, 24(1): 13-16. (in Chinese))
    [6]
    喻泽红, 魏红卫, 邹银生. 加筋红砂岩风化土强度和变形特性[J]. 岩石力学与工程学报, 2005, 24(15): 2770-2779.
    (YU Ze-hong, WEI Hong-wei, ZOU Yin-sheng.Characteristics of shear strength and deformation of reinforced red sand silty clay with geosynthetics[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2770-2779. (in Chinese))
    [7]
    孔令伟, 钟方杰, 郭爱国, 等. 杭州湾浅层储气砂土应力路径试验研究[J]. 岩土力学, 2009, 30(8): 2209-2214.
    (KONG Ling-wei, GUO Fang-jie, GUO Ai-guo.Experimental study of stress path of shallow gassy sand of Hangzhou Bay[J]. Rock and Soil Mechanics, 2009, 30(8): 2209-2214. (in Chinese))
    [8]
    祝艳波, 余宏明, 杨艳霞,等.红层泥岩改良土特性室内试验研究[J]. 岩石力学与工程学报, 2013, 32(2): 425-432.
    (ZHU Yan-bo, YU Hong-ming, YANG Yan-xia, et al.Indoor experimental research on characteristics of improved red-mudstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 425-432. (in Chinese))
    [9]
    甘文宁, 朱大勇, 吴迎雷, 等. 红砂岩细粒土抗剪强度的试验研究[J]. 四川大学学报(工程科学版), 2014, 46(增刊2): 70-75.
    (GAN Wen-ning, ZHU Da-yong, WU Ying-lei, et al.Experimental study on shear strength of sandstone fine-grained soils[J]. Journal of Sichuan University(Engineering Science Edition) 2014, 46(S2): 70-75. (in Chinese))
    [10]
    戎虎仁, 白海波, 王占盛. 不同温度后红砂岩力学性质及微观结构变化规律试验研究[J]. 岩土力学, 2015, 36(2): 463-469.
    (RONG Hu-ren, BAI Hai-bo, WANG Zhan-sheng.Experimental research on mechanical properties and microstructure change law of red sandstone after different temperatures[J]. Rock and Soil Mechanics, 2015, 36(2): 463-469. (in Chinese))
    [11]
    朱彦鹏, 杨校辉, 周勇, 等. 基于含水率和干密度影响的压实土抗剪强度试验[J]. 兰州理工大学学报, 2016, 42(6): 114-120.
    (ZHU Yan-peng, YANG Xiao-hui, ZHOU Yong, et al.Experimental of shear strength of compacted soil when effect of its moisture capacity and dry density being taken into account[J]. Journal of Lanzhou University of Technology, 2016, 42(6): 114-120. (in Chinese))
    [12]
    王浩宇, 许金余, 王鹏, 等. 水-动力耦合作用下红砂岩力学性质及能量机制研究[J]. 岩土力学, 2016, 37(10): 2861-2868.
    (WANG Hao-yu, XU Jin-yu, WANG Peng, et al.Mechanical properties and energy mechanism of red sandstone under hydro-dynamic coupling effect[J]. Rock and Soil Mechanics, 2016, 37(10): 2861-2868. (in Chinese))
    [13]
    JTG E40—2007 公路土工试验规程[S]TG E40—2007 公路土工试验规程[S]. 北京: 人民交通出版社, 2007.
    (JTG E40—2007 China test methods of soils for highway engineering[S]TG E40—2007 China test methods of soils for highway engineering[S]. Beijing: China Communication Press, 2007. (in Chinese))
  • Related Articles

    [1]LIANG Xiaomin, GU Xiaoqiang, ZHAI Chongpu, WEI Deheng. Anisotropic wave velocities of granular materials and microscopic fabric using X-ray computed tomography[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1398-1407. DOI: 10.11779/CJGE20230425
    [2]ZHANG He-nian, CHEN Liang, LI Xiong-wei, XI Pei-sheng, MU Lin, HU Cai-yun. Ratio and mechanism of activated magnesium oxide carbonized raw earth block materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 233-236. DOI: 10.11779/CJGE2021S2055
    [3]YAO Jun-kai, YE Yang-sheng, WANG Peng-cheng, CHEN Feng, CAI De-gou. Subgrade heave of sulfate attacking on cement-stabilized filler[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 782-788. DOI: 10.11779/CJGE201904024
    [4]XU Xiao-li, GAO Feng, ZHANG Zhi-zhen, ZHANG Chuan-hu. Energy and structural effects of granite after high temperature[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 961-968. DOI: 10.11779/CJGE201405022
    [5]ZHOU Qiao-yong, XIONG Bao-lin, YANG Guang-qing, LIU Wei-chao. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 439-444.
    [6]YU Hui, DING Xuan-ming, KONG Gang-qiang, ZHENG Chang-jie. Comparative FEM analysis of deformation properties of expressway widening projects with cast-in-situ X-shaped concrete piles and circular pile[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 170-176.
    [7]WANG Cheng-hu, WANG Hong-cai, LIU Li-peng, SUN Dong-sheng, ZHAO Wei-hua. Effects of high temperatures on mechanical performance of basaltic tuff and mechanism analysis[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1827-1835.
    [8]Micro-experiments on a soft ground improved by cement-mixed soils with gypsum additive[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8).
    [9]Full scale model tests on vertical bearing characteristics of cast-in-place X-section piles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
    [10]WU Yanqing, CAO Guangzhu, DING Weihua. Permeability experiment of sandstone under variable seepage pressures by using X-ray CT real-time observation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 780-785.
  • Cited by

    Periodical cited type(4)

    1. 王大兵,黄郁东,韩振中,徐考,崔文海,周苏华. 基于贝叶斯逻辑回归模型的边坡稳定性预测. 市政技术. 2023(10): 173-180 .
    2. 曾锃,赵树祥,葛龙进,潘卫平,李敏,殷国峰. 罗闸河二级水电站拱坝右岸边坡变形破坏机制研究及治理后评估. 岩土工程学报. 2021(S1): 171-175 . 本站查看
    3. 夏增选,李萍,曹博,李同录,沈伟,康海伟. 边坡可靠度的Bayes估计及后验稳健性. 河海大学学报(自然科学版). 2020(03): 238-244 .
    4. 谢永利,刘新荣,晏长根,杨忠平,李家春,周志军,岳夏冰. 特殊岩土体工程边坡研究进展. 土木工程学报. 2020(09): 93-105 .

    Other cited types(18)

Catalog

    Article views PDF downloads Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return