• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Yan-jie, LI Jian-dong, WANG Xu, LI Fan, LI Sheng, MA Xue-ning. Soaking test on underground diaphragm wall in artificially prepared collapsible loess foundation[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 73-80. DOI: 10.11779/CJGE2018S1012
Citation: ZHANG Yan-jie, LI Jian-dong, WANG Xu, LI Fan, LI Sheng, MA Xue-ning. Soaking test on underground diaphragm wall in artificially prepared collapsible loess foundation[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 73-80. DOI: 10.11779/CJGE2018S1012

Soaking test on underground diaphragm wall in artificially prepared collapsible loess foundation

More Information
  • Received Date: February 23, 2018
  • Published Date: August 24, 2018
  • The tests on the bearing behavior of diaphragm wall foundation are conducted to study the vertical ultimate bearing capacity of diaphragm wall and distribution characteristics of negative skin friction after water immersion in collapsible loess foundation. The artificial collapsible loess is prepared by using quartz powder, sand, bentonite, gypsum and industrial salt, and its physical and mechanical properties are analyzed. The tests on the bearing capacity of diaphragm wall foundation are carried out with the artificially prepared collapsible loess as the model filling soil. The results show that the physical and mechanical parameters of artificial loess have a high coherence with those of natural loess, which can be applied to the model tests on the interaction between collapsible loess and structure as similar materials. The total load sharing ratio of side frictional resistance for outer wall and inner wall is 67% as the vertical bearing capacity of the diaphragm wall reaches its limit, which comes to the conclusion that the diaphragm wall is a kind of end-bearing friction foundation. After foundation soaking, the depth ratio of neutral points ranges from 0.64 to 0.73, which is in good agreement with the test results of soaking tests on pile foundation. The core soil is not influenced by water because the diaphragm wall foundation has good integrity and anti-permeability, which exerts side friction of inner wall and reaction force of bearing-stage soil and reduces the foundation settlement of diaphragm wall effectively.
  • [1]
    ASSALLAY A M, ROGERS C D F, SMALLEY I J. Formation and collapse of metastable particle packings and open structures in loess deposits[J]. Engineering Geology, 1997, 48: 101-115.
    [2]
    BASMA A A, TUNCER E R.Evaluation and control of collapsible soils[J]. Geotech. Engrg. ASCE, 1992. 118(10): 1491-1504.
    [3]
    ZOURMPAKIS A, BOARDMAN D I, ROGERS C D F. Creation of artificial loess soils[C]// Proc of the Int Conf from Experimental Evidence Towards Numerical Modeling of Unsaturated Soils. Springer, 2005, 1: 123-134.
    [4]
    JEFFERSON Ian, AHMAD Mufida.Formation of artificial collapsible loess[C]// Problematic Soils and Rocks and In Situ Characterization. ASCE, 2007.
    [5]
    JIANG Ming-jing, SHEN Zhu-jiang.Preparation of artificial structured collapsible loess and its behavior in oedometer test[C]// 2nd International Conference on Unsaturated Soils. Beijing, 1998: 374-378.
    [6]
    胡再强, 沈珠江, 谢定义. 结构性黄土的变形特性[J]. 岩石力学与工程学报, 2004, 23(24): 4142-4146.
    (HU Zai-qiang, SHEN Zhu-jiang, XIE Ding-yi.Deformation properties of structural loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(24): 4142-4146. (in Chinese))
    [7]
    陈昌禄, 邵生俊, 张喆. 人工制备结构性黄土的真三轴试验研究[J]. 岩土力学, 2013, 34(8): 2231-2237.
    (CHEN Chang-lu, SHAO Sheng-jun, ZHANG Zhe.Study of artificial structural loess under true triaxial tests[J]. Rock and Soil Mechanics, 2013, 34(8): 2231-2237. (in Chinese))
    [8]
    骆亚生, 谢定义, 邵生俊, 等. 非饱和黄土的结构变化特性[J]. 西北农林科技大学学报, 2004, 32(8): 114-118.
    (LUO Ya-sheng, XIE Ding-yi, SHAO Sheng-jun, et al.Variation characteristics of Soil structure of unsaturated loess[J]. Journal of Northwest A & F University, 2004, 32(8): 114-118. (in Chinese))
    [9]
    李涛. 铁路桥梁连续墙挖井基础设计方法的试验研究[J].中国铁道科学, 1997, 18(2): 46-53.
    (LI Tao.Test and research on the design method for diaphragm wall-type digging well foundation of railway bridge[J]. China Railway Science, 1997, 18(2): 46-53. (in Chinese))
    [10]
    孟凡超, 陈晓东, 程谦恭, 等. 黄土地区地下连续墙桥梁基础试验研究[M]. 北京: 人民交通出版社, 2010.
    (MENG Fan-chao, CHENG Xiao-dong, CHENG Qian-gong, et al.Test on diaphragm wall as bridge foundation in loess area[M]. Beijing: China Communications Press, 2010. (in Chinese))
    [11]
    程谦恭, 文华, 宋章. 地下连续墙桥梁基础承载机制[M]. 北京: 科学出版社, 2011.
    (CHENG Qian-gong, WEN Hua, SONG Zhang.Bearing Mechanism of diaphragm wall as bridge foundation[M]. Beijing: Science Press, 2011. (in Chinese))
    [12]
    文华, 程谦恭, 陈晓东, 等. 矩形闭合地下连续墙桥梁基础竖向承载特性试验研究[J]. 岩土工程学报, 2007, 29(12): 1823-1830.
    (WEN Hua, CHENG Qian-gong, CHENG Xiao-dong, et al.Study on bearing performance of rectangular closed diaphragm walls as bridge foundation under vertical loading[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1823-1830. (in Chinese))
    [13]
    文华, 程谦恭, 宋章. 矩形闭合地下连续墙基础负摩阻力模型试验研究[J]. 岩土工程学报, 2008, 30(4): 541-548.
    (WEN Hua, CHENG Qian-gong, SONG Zhang.Model tests on negative skin friction of rectangular closed diaphragm wall foundation[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 541-548. (in Chinese))
    [14]
    张延杰, 王旭, 梁庆国, 等. 人工制备强湿陷性黄土物理力学性质试验研究[J]. 兰州交通大学学报, 2015, 34(6): 27-31.
    (ZHANG Yan-jie, WANG Xu, LIANG Qing-guo, et al.Experimental study of physic-mechanical properties of artificial serious collapsible loess[J]. Journal of Lanzhou Jiaotong University, 2015, 34(6): 27-31. (in Chinese))
    [15]
    刘祖典. 黄土力学与工程[M]. 西安: 陕西科学技术出版社, 1997.
    (LIU Zu-dian.Loess mechanics and engineering[M]. Xi'an: Shaanxi Science and Technology Press, 1997. (in Chinese))
    [16]
    赵明华, 曹文贵, 刘齐建, 等. 按桩顶沉降控制嵌岩桩竖向承载力的方法[J]. 岩土工程学报, 2004, 26(1): 67-71.
    (ZHAO Ming-hua, CAO Wen-gui, LIU Qi-jian, et al.Method of determination of vertical bearing capacity of rock-socketed pile by the settlement of pile top[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 67-71. (in Chinese))
    [17]
    黄雪峰, 陈正汉, 哈双, 等. 大厚度自重湿陷性黄土中灌注桩承载特性与负摩阻力的试验研究[J].岩土工程学报, 2007, 29(3): 338-346.
    (HUANG Xue-feng, CHEN Zheng-han, HA Shuang, et al.Large area field immersion tests on characteristics of deformation of self -weight collapse loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 338-346. (in Chinese))
  • Related Articles

    [1]LIANG Xiaomin, GU Xiaoqiang, ZHAI Chongpu, WEI Deheng. Anisotropic wave velocities of granular materials and microscopic fabric using X-ray computed tomography[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1398-1407. DOI: 10.11779/CJGE20230425
    [2]ZHANG He-nian, CHEN Liang, LI Xiong-wei, XI Pei-sheng, MU Lin, HU Cai-yun. Ratio and mechanism of activated magnesium oxide carbonized raw earth block materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 233-236. DOI: 10.11779/CJGE2021S2055
    [3]YAO Jun-kai, YE Yang-sheng, WANG Peng-cheng, CHEN Feng, CAI De-gou. Subgrade heave of sulfate attacking on cement-stabilized filler[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 782-788. DOI: 10.11779/CJGE201904024
    [4]XU Xiao-li, GAO Feng, ZHANG Zhi-zhen, ZHANG Chuan-hu. Energy and structural effects of granite after high temperature[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 961-968. DOI: 10.11779/CJGE201405022
    [5]ZHOU Qiao-yong, XIONG Bao-lin, YANG Guang-qing, LIU Wei-chao. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 439-444.
    [6]YU Hui, DING Xuan-ming, KONG Gang-qiang, ZHENG Chang-jie. Comparative FEM analysis of deformation properties of expressway widening projects with cast-in-situ X-shaped concrete piles and circular pile[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 170-176.
    [7]WANG Cheng-hu, WANG Hong-cai, LIU Li-peng, SUN Dong-sheng, ZHAO Wei-hua. Effects of high temperatures on mechanical performance of basaltic tuff and mechanism analysis[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1827-1835.
    [8]Micro-experiments on a soft ground improved by cement-mixed soils with gypsum additive[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8).
    [9]Full scale model tests on vertical bearing characteristics of cast-in-place X-section piles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
    [10]WU Yanqing, CAO Guangzhu, DING Weihua. Permeability experiment of sandstone under variable seepage pressures by using X-ray CT real-time observation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 780-785.
  • Cited by

    Periodical cited type(4)

    1. 王大兵,黄郁东,韩振中,徐考,崔文海,周苏华. 基于贝叶斯逻辑回归模型的边坡稳定性预测. 市政技术. 2023(10): 173-180 .
    2. 曾锃,赵树祥,葛龙进,潘卫平,李敏,殷国峰. 罗闸河二级水电站拱坝右岸边坡变形破坏机制研究及治理后评估. 岩土工程学报. 2021(S1): 171-175 . 本站查看
    3. 夏增选,李萍,曹博,李同录,沈伟,康海伟. 边坡可靠度的Bayes估计及后验稳健性. 河海大学学报(自然科学版). 2020(03): 238-244 .
    4. 谢永利,刘新荣,晏长根,杨忠平,李家春,周志军,岳夏冰. 特殊岩土体工程边坡研究进展. 土木工程学报. 2020(09): 93-105 .

    Other cited types(18)

Catalog

    Article views (171) PDF downloads (152) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return