• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YIN Wan-lei, PAN Yi-shan, LI Zhong-hua. Mechanism of rock burst in rectangular section roadway[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1135-1142. DOI: 10.11779/CJGE201806020
Citation: YIN Wan-lei, PAN Yi-shan, LI Zhong-hua. Mechanism of rock burst in rectangular section roadway[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1135-1142. DOI: 10.11779/CJGE201806020

Mechanism of rock burst in rectangular section roadway

More Information
  • Received Date: March 07, 2017
  • Published Date: June 24, 2018
  • The critical plastic softening zone depth and the critical load of rock bursts in a rectangular section tunnel are obtained based on the roof shear beam model for rock burst problem of roadway, and the effects of correlation factors on the critical conditions are investigated. The results show that the damage of roof rock strata is dominated by the shear deformation, and the critical depth and the critical load of the plastic zone are important parameters for identifying risk impact. Rock burst will easily happen if the critical depth and the critical load of the plastic zone are small. Its occurrence frequency is higher, but its intensity is smaller, and the destruction is also small. When they are large enough, the opposite situations occur. The influence factors of rectangular section in roadways include roadway width, height or thickness of coal seam, thickness of roof, stiffness ratio of coal seam and roof, modulus, intensity parameter, lateral pressure coefficient and horizontal stress distribution index. The critical depth of the plastic zone increases a little with the height-width ratio of roadway, and it increases with the increase of the thickness of the roof, stiffness ratio and horizontal stress distribution index. It decreases with the increasing plastic stiffness softening, internal friction angle and lateral pressure coefficient, and it has nothing to do with the initial magnitude of the cohesive force. The critical load decreases with the height-width ratio of roadway and it increases with the increase of the thickness of the roof, stiffness ratio, modulus ratio, cohesive force, internal friction angle and lateral pressure coefficient. It decreasess with the increasing plastic stiffness softening and horizontal stress distribution index.
  • [1]
    潘一山, 章梦涛, 李国臻. 稳定性动力准则的圆形洞室岩爆分析[J]. 岩土工程学报, 1993, 15(5): 59-66.
    (PAN Yi-shan, ZHANG Meng-tao, LI Guo-zhen.Analysis on cicrular chamber rockbusrt by dynamic stabiliyt criterion[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(5): 59-66. (in Chinese))
    [2]
    潘一山, 章梦涛. 冲击地压失稳理论的解析分析[J]. 岩石力学与工程学报, 1996, 15(增刊): 504-510.
    (PAN Yi-shan, ZHANG Meng-tao.The exact solution for rockburst in coal mine by unstability rockburst theory[J]. Chinese Journal of Rock Mechanics and Engineering, 1996, 15(S0): 504-510. (in Chinese))
    [3]
    潘一山. 冲击地压发生和破坏过程研究[D]. 北京: 清华大学, 1999.
    (PAN Yi-shan.Study on rockburst initiation and failure propagation[D]. Beijing: Tsinghua University, 1999. (in Chinese))
    [4]
    李忠华, 官福海, 潘一山. 基于损伤理论的圆形巷道围岩应力场分析[J]. 岩土力学, 2004, 25(增刊): 160-163.
    (LI Zhong-hua, GUAN Fu-hai, PAN Yi-shan.Analysis of stress field of rock surrounding circular roadway based on damage theory[J]. Rock and Soil Mechanics, 2004, 25(S0): 160-163. (in Chinese))
    [5]
    魏悦广. 两向不等压作用下圆形巷道弹塑性分析摄动解[J]. 岩土工程学报, 1990, 12(4): 11-20.
    (WEI Yue-guang.Perturbation solutions for elasto-plastic analysis of cireular tunnel under unequal compression in two directions[J]. Journal of Geotechnical Engineering, 1990, 12(4): 11-20. (in Chinese))
    [6]
    郭延华, 姜福兴, 张常光. 高地应力下圆形巷道临界冲击地压解析解[J]. 工程力学, 2011, 28(2): 118-122.
    (GUO Yan-hua, JIANG Fu-xing, ZHANG Chang-guang.Analytical solution for critical rockburst of a circular chamber subjected to high in-situ stress[J]. Engineering Eechanics, 2011, 28(2): 118-122. (in Chinese))
    [7]
    黄庆享, 高召宁. 巷道冲击地压的损伤断裂力学模型[J]. 煤炭学报, 2001, 26(2): 156-159.
    (HUANG Qing-xiang, GAO Zhao-ning.Mechanical model of fracture and damage of coal bump in the entry[J]. Journal of China Coal Society, 2001, 26(2): 156-159. (in Chinese))
    [8]
    MENG Qing-bin, HAN Li-jun, QIAO Wei-guo, et al.Support technology for mine roadways in extreme weakly cemented strata and its application[J]. International Journal of Mining Science and Technology, 2014, 24(2): 157-164. (in Chinese)
    [9]
    PIETRUSZCZAK S, MROZ Z.Numerical analysis of elastic-plastic compression of pillars accounting for material hardening and softening[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1980, 17(4): 199-207.
    [10]
    PIETRUSZCZAK S, MRÓZ Z. Finite element analysis of deformation of strain-softening materials[J]. International Journal for Numerical Methods in Engineering, 1981, 17(3): 327-334.
    [11]
    MRÓZ Z, NAWROCKI P. Deformation and stability of an elasto-plastic softening pillar[J]. Rock Mechanics and Rock Engineering, 1989, 22: 69-108.
    [12]
    潘一山, 李国臻, 章梦涛. 回采巷道冲击地压危险指标的确定[J]. 矿山压力与顶板管理, 1994(1): 56-59.
    (PAN Yi-shan, LI Guo-zhen, ZHANG Meng-tao.Determination of the rock burst hazardous indices in mining working[J]. Ground Pressure and Strata Control, 1994(1): 56-59. (in Chinese))
  • Related Articles

    [1]GONG Jian-qing, PENG Wen-zhe. Three-dimensional finite element analysis of stress and deformation characteristics of energy piles under inclined loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2105-2111. DOI: 10.11779/CJGE202111017
    [2]HAN Lei, YE Guan-lin, WANG Jian-hua, YANG Guang-hui, ZHOU Song. Finite element analysis of impact of under-crossing of large shallow shield tunnel on riverbank[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 125-128. DOI: 10.11779/CJGE2015S1025
    [3]DU Chuang, DING Hong-yan, ZHANG Pu-yang, LI Jing. Analysis of steel sheet pile cofferdam using finite element method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 159-164. DOI: 10.11779/CJGE2014S2027
    [4]CAI Feng, HE Li-jun, ZHOU Xiao-peng, XU Mei-juan, MEI Guo-xiong. Finite element analysis of one-dimensional consolidation of undrained symmetry plane under continuous drainage boundary[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2141-2147.
    [5]SUN Hai-zhong. Application of finite element numerical analysis in excavation design[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 129-133.
    [6]HAN Jin-bao, XIONG Ju-hua, SUN Qing, YANG Min. Multi-factor three-dimensional finite element analysis of effects of tunnel construction on adjacent pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 339-344.
    [7]XU Wen-qiang, YUAN Fan-fan, WEI Chang-fu, YANG Cao-shuai. Bearing capacity of suction tapered bucket foundations based on three-dimensional finite element numerical analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 485-490.
    [8]HAN Bing, CAO Pinlu. Finite element analysis of interaction between soils and impact sampling bits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1560-1563.
    [9]ZHENG Hong, C. F. Lee, L. G. Tham, Ge Xiurun. Displacement-controlled method in finite element analysis and its applications[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 81-85.
    [10]Yu Zehong, Zhang Qisen. Finite Element Analysis for Mechanism of Geonets-Soil Interaction[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 79-85.
  • Cited by

    Periodical cited type(22)

    1. 黄飞虎,裴彦飞,苏谦,王鑫,杨鸿麟,李艳东. 螺旋钢桩加固边坡抗滑承载特性研究. 铁道科学与工程学报. 2024(02): 578-590 .
    2. 李绪勇,杨忠平,刘纲,李勇华,张益铭. 隔离式螺旋桩抗压承载与抗地基冻融特性. 岩土工程学报. 2024(06): 1187-1196 . 本站查看
    3. 车松阳,裴碧莹,徐洪俊. 螺旋桩室内模型试验设计及结果分析. 科技创新与应用. 2024(17): 68-71 .
    4. 周亚龙,王旭,蒋代军,刘德仁,何菲,晏昌,牛富俊. 青藏铁路接触网异型桩基抗冻拔模型试验研究. 西南交通大学学报. 2024(03): 677-684 .
    5. 孙铁成,杨逸,杨茜,董创奇. 开敞系统中冻土-混凝土界面抗拉强度试验研究. 石家庄铁道大学学报(自然科学版). 2024(02): 92-98 .
    6. 郝冬雪,王磊,陈榕,莫凯强,孔纲强,高宇聪. 冻融循环下粉砂中螺旋锚抗拔稳定模型试验研究. 岩土工程学报. 2023(01): 57-65 . 本站查看
    7. 陈强,李驰,高利平. 基于图像处理技术水分迁移对光伏桩冻拔稳定性影响的试验研究. 太阳能学报. 2023(01): 49-54 .
    8. 田天伦,苏安双,贾青,王淼. 光伏螺旋桩基抗冻拔数值模拟. 水利科学与寒区工程. 2023(03): 1-6 .
    9. 吴炅,陈鹏飞,尹啸笛,郝洪策,梁成军. 桩体结构参数对螺旋桩-土冻胀性能的影响. 河南科学. 2023(07): 964-969 .
    10. 张学礼,崔强,张树林. 冻土地基中锥管板条装配式基础抗拔承载性能试验研究. 地质科技通报. 2022(02): 335-342 .
    11. 熊维林,葛洪林,富海鹰. 考虑非对称冻结的塔杆基础模型实验研究. 铁道科学与工程学报. 2022(04): 931-940 .
    12. 王卫东,崔强,韩杨春,张树林,孟宪乔. 高寒地区输电线路锥管板条装配式基础抗冻拔性能试验研究. 防灾减灾工程学报. 2022(03): 542-552 .
    13. 王超哲,吴进,王立兴,刘浩,杨紫健,吴文兵. 黏弹性地基中螺旋桩水平动力特性. 中南大学学报(自然科学版). 2022(06): 2279-2289 .
    14. 杨朝旭,任刚,殷卫永,韩战涛,任文博,李佳佳. 钢管螺旋桩防护公路膨胀土高边坡工程应用. 公路. 2022(07): 41-48 .
    15. 陈明伟,陈航杰. 桩型对冻土桩基冻胀特性的影响研究. 甘肃科技. 2022(09): 8-12 .
    16. 黄旭斌,盛煜,黄龙,彭尔兴,曹伟,张玺彦,何彬彬. 单向冻结条件下扩底桩抗冻拔能力试验研究. 工程科学与技术. 2021(01): 122-131 .
    17. 屈讼昭,郭咏华,王仪,张斌,张建明,孙清. 大锚片螺旋锚在粉质黏土中的下压承载性能. 土木与环境工程学报(中英文). 2021(05): 34-44 .
    18. 高晓静,孙铁成,李晓康,廖一鸣. 冻结作用下粉土-混凝土接触面抗拉强度试验研究. 冰川冻土. 2020(02): 499-507 .
    19. 黄旭斌,盛煜,黄龙,何彬彬,张玺彦. 季节冻土区扩底单桩受力性能研究进展与展望. 冰川冻土. 2020(04): 1220-1228 .
    20. 王希云,邵康,苏谦,刘凯文,邹婷. 单叶片螺旋钢桩竖向承载特性数值分析. 铁道标准设计. 2019(07): 66-71 .
    21. 王希云. 螺旋钢桩设计参数对抗压承载性能的影响研究. 路基工程. 2019(03): 57-61 .
    22. 邵康,苏谦,刘凯文,李婷,周珩. 竖向受压下考虑安装扰动螺旋钢桩数值模拟分析与现场载荷试验. 岩石力学与工程学报. 2019(12): 2570-2581 .

    Other cited types(21)

Catalog

    Article views (296) PDF downloads (167) Cited by(43)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return