• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Xiong-yu, HE Chuan, WU Di, YANG Qing-hao. Combined support technology of segment linings with compressible crushed stone and anchor bolts in layed rock[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1093-1102. DOI: 10.11779/CJGE201806015
Citation: HU Xiong-yu, HE Chuan, WU Di, YANG Qing-hao. Combined support technology of segment linings with compressible crushed stone and anchor bolts in layed rock[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1093-1102. DOI: 10.11779/CJGE201806015

Combined support technology of segment linings with compressible crushed stone and anchor bolts in layed rock

More Information
  • Received Date: February 21, 2017
  • Published Date: June 24, 2018
  • The segment lining is susceptible to unsymmetrical pressure when a shield tunnel is constructed in deep layered rock. A new support technology of segment linings combined with compressible ceramic and anchor bolts is proposed. In order to study the effect of the support technology, similar model tests are carried out to study the support effect of segment linings with compressible ceramic and anchor bolts with different lengths and spacings. The internal force and deformation of the segment linings are analyzed, and the mechanism of the combined support is revealed from the deformation path of compressible ceramic. The results show that the combined support technology can change the internal force distribution of the segment linings to some extent and can also reduce the biased pressure of the surrounding rock. The application of the bolts can effectively reduce the deformation of the layered rock, and the compressible ceramic can effectively absorb the deformation. There are optimum values of the length and the spacing of the bolts in the combined support, and beyond the values, the reinforcement effect of the bolts will not increase obviously. The mechanism of the combined support consists of two parts: the yielding effect of the compressible ceramic and the reinforcement effect of the bolts. The results of this study have certain reference value for the support design of the shield tunnels in layered rock.
  • [1]
    彭焱森. 陡倾层状岩体隧道开挖稳定性研究[D]. 重庆: 重庆交通大学, 2012.
    (PENG Yan-sen.Study on the stabilization of excavating the steep-dipping rock mass Tunnel[D]. Chongqing: Chongqing Jiaotong University, 2012. (in Chinese))
    [2]
    刘恺德, 刘泉声, 朱元广, 等. 考虑层理方向效应煤岩巴西劈裂及单轴压缩试验研究[J]. 岩石力学与工程学报, 2013, 32(2): 308-316.
    (LIU Kai-de, LIU Quan-sheng, ZHU Yuan-guang, et al.Experimental study of coal considering directivity effect of bedding plane under brazilian splitting and uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 308-316. (in Chinese))
    [3]
    朱永全, 李文江, 赵勇. 软弱围岩隧道稳定性变形控制技术[M]. 北京: 人民交通出版社, 2012.
    (ZHU Yong-quan, LI Wen-jiang, ZHAO Yong.Deformation control technology of weak surrounding rock tunnel stability[M]. Beijing: China Communications Press, 2012. (in Chinese))
    [4]
    沙鹏, 伍法权, 李响, 等. 高地应力条件下层状地层隧道围岩挤压变形与支护受力特征[J]. 岩土力学, 2015, 36(5): 1407-1414.
    (SA Peng, WU Fa-quan, LI Xiang, et al.Squeezing deformation in layered surrounding rock and force characteristics of support system of a tunnel under high in-situ stress[J]. Rock and Soil Mechanics, 2015, 36(5): 1407-1414. (in Chinese))
    [5]
    李树忱, 马腾飞, 蒋宇静. 深部多裂隙岩体开挖变形破坏规律模型试验研究[J]. 岩土力学, 2009, 30(7): 1933-1938.
    (LI Shu-chen, MA Teng-fei, JIANG Yu-jing, et al.Model tests on deformation and failure laws in excavation of deep rock mass with multiple fracture sets[J]. Chinese Journal of Geotechnical Engineering, 2009, 30(7): 1933-1938. (in Chinese))
    [6]
    BOSSART P. WERMEILLE S.The stress field in the Mont Terri region-data compilation[C]// Mont Terri Project- Geology, Paleontology, Stress Field. Swiss Geological Survey, Bern. Reports of the Federal Office for Water and Geology (FOWG), Geology Series. Bern, 2003, 4: 65-92.
    [7]
    BLÜMLING P, BERNIER F, LEBON P, et al. The excavation damaged zonein clay formations time-dependent behaviour and influence on performance assessment[J]. Phys Chem Earth Parts A/B/C, 2007, 32: 588-599.
    [8]
    MYUNG S G, DUHEE P, JAEHO Y, et al.Experimental and numerical analyses of an opening in a jointed rock mass under biaxial compression[J]. International Journal of Rock Mechanics & Mining Sciences, 2011, 48(7): 1055-1067.
    [9]
    BONINI M, BARLA G.The saint martin la porte access adit (Lyon-Tutin Base Tunnel) revisited[J]. Tunnelling and Underground Space Technology, 2012, 30: 38-54.
    [10]
    黄万朋. 深部巷道非对称变形机理与围岩流变及扰动变形控制研究[D]. 北京: 中国矿业大学, 2012.
    (HUAGN Wan-peng.Analysis on the laws of deep tunnel's asymmetric deformation and control technology of surrounding rock's rheological and disturbed deformation[D]. Beijing: China University of Mining and Technology, 2012. (in Chinese))
    [11]
    孙晓明, 何满潮, 杨晓杰. 深部软岩巷道锚网索耦合支护非线性设计方法研究[J]. 岩土力学, 2006, 27(7): 1061-1065.
    (SUN Xiao-ming, HE Man-chao, YANG Xiao-jie.Research on nonlinear mechanical design method of bolt-net-anchor coupling support for deep soft rock tunnel[J]. Rock and Soil Mechanics, 2006, 27(7): 1061-1065. (in Chinese))
    [12]
    ANAGNOSTOU G, CANTIENI L.Design and analysis of yielding support in squeezing ground[C]// 11th Congress of the International Society for Rock Mechanics. Lisbon, 2007: 829-832.
    [13]
    RAMONI M, ANAGNOSTOU G.Tunnel boring machines undersqueezing conditions[J]. Tunnelling and Underground Space Technology, 2010b, 25(2): 139-157.
    [14]
    YU Yang, BAI Jian-biao, WANG Xiang-yu, et al.High-resistance controlled yielding supporting technique in deep-well oil shale roadways[J]. International Journal of Mining Science and Technology, 2014, 24(2): 229-236.
    [15]
    韩昌瑞, 白世伟, 王玉朋, 等. 层状岩体深埋长隧道锚杆支护优化设计[J]. 岩土力学, 2016, 37(增刊1): 409-414.
    (HAN Chang-rui, BAI Shi-wei, WANG Yu-peng, et al.Optimum design of rock bolts supporting long-deep tunnel in layered surrounding rock mass[J]. Rock and Soil Mechanics, 2016, 37(S1): 409-414. (in Chinese))
    [16]
    熊亮. 层状围岩隧道稳定性及锚杆支护参数优化[D]. 重庆: 重庆大学, 2010.
    (XIONG Liang.Layered rock stability and bolt support parameter optimization of tunnel[D]. Chongqing: Chongqing University, 2010. (in Chinese))
    [17]
    地盘工学会.シールドトンネルの新技術[M]. 东京: 鹿岛出版社, 1997.
    (Research Association on New Shield Tunnology. New technology in shield tunneling[M]. Tokyo: Kajima Institute Publishity Co. Ltd. 1998. (in Japanese))
    [18]
    同济大学. 可模拟盾构隧道管片接头的试验模型及其制作方法: 中国, 200810038954.6[P].2008-10-3.
    (Tongji University. Trial model capable of simulating shield tunnel pipe slice joint and manufacturing method thereo:China,200810038954.6[P].2008-10-3. (in Chinese))
    [19]
    王士民, 于清洋, 彭博, 等. 封顶块位置对盾构隧道管片结构力学特征与破坏形态的影响分析[J]. 岩土工程学报, 2016, 49(6): 123-132.
    (WANG Shi-min, YU Qing-yang, PENG Bo, et al.Analysis of mechanical characteristics and failure pattern of shield tunnel segment with different position of key block[J]. China Civil Engineering Journal, 2016, 49(6): 123-132. (in Chinese))
  • Related Articles

    [1]GONG Jian-qing, PENG Wen-zhe. Three-dimensional finite element analysis of stress and deformation characteristics of energy piles under inclined loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2105-2111. DOI: 10.11779/CJGE202111017
    [2]HAN Lei, YE Guan-lin, WANG Jian-hua, YANG Guang-hui, ZHOU Song. Finite element analysis of impact of under-crossing of large shallow shield tunnel on riverbank[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 125-128. DOI: 10.11779/CJGE2015S1025
    [3]DU Chuang, DING Hong-yan, ZHANG Pu-yang, LI Jing. Analysis of steel sheet pile cofferdam using finite element method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 159-164. DOI: 10.11779/CJGE2014S2027
    [4]CAI Feng, HE Li-jun, ZHOU Xiao-peng, XU Mei-juan, MEI Guo-xiong. Finite element analysis of one-dimensional consolidation of undrained symmetry plane under continuous drainage boundary[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2141-2147.
    [5]SUN Hai-zhong. Application of finite element numerical analysis in excavation design[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 129-133.
    [6]HAN Jin-bao, XIONG Ju-hua, SUN Qing, YANG Min. Multi-factor three-dimensional finite element analysis of effects of tunnel construction on adjacent pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 339-344.
    [7]XU Wen-qiang, YUAN Fan-fan, WEI Chang-fu, YANG Cao-shuai. Bearing capacity of suction tapered bucket foundations based on three-dimensional finite element numerical analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 485-490.
    [8]HAN Bing, CAO Pinlu. Finite element analysis of interaction between soils and impact sampling bits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1560-1563.
    [9]ZHENG Hong, C. F. Lee, L. G. Tham, Ge Xiurun. Displacement-controlled method in finite element analysis and its applications[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 81-85.
    [10]Yu Zehong, Zhang Qisen. Finite Element Analysis for Mechanism of Geonets-Soil Interaction[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 79-85.
  • Cited by

    Periodical cited type(22)

    1. 黄飞虎,裴彦飞,苏谦,王鑫,杨鸿麟,李艳东. 螺旋钢桩加固边坡抗滑承载特性研究. 铁道科学与工程学报. 2024(02): 578-590 .
    2. 李绪勇,杨忠平,刘纲,李勇华,张益铭. 隔离式螺旋桩抗压承载与抗地基冻融特性. 岩土工程学报. 2024(06): 1187-1196 . 本站查看
    3. 车松阳,裴碧莹,徐洪俊. 螺旋桩室内模型试验设计及结果分析. 科技创新与应用. 2024(17): 68-71 .
    4. 周亚龙,王旭,蒋代军,刘德仁,何菲,晏昌,牛富俊. 青藏铁路接触网异型桩基抗冻拔模型试验研究. 西南交通大学学报. 2024(03): 677-684 .
    5. 孙铁成,杨逸,杨茜,董创奇. 开敞系统中冻土-混凝土界面抗拉强度试验研究. 石家庄铁道大学学报(自然科学版). 2024(02): 92-98 .
    6. 郝冬雪,王磊,陈榕,莫凯强,孔纲强,高宇聪. 冻融循环下粉砂中螺旋锚抗拔稳定模型试验研究. 岩土工程学报. 2023(01): 57-65 . 本站查看
    7. 陈强,李驰,高利平. 基于图像处理技术水分迁移对光伏桩冻拔稳定性影响的试验研究. 太阳能学报. 2023(01): 49-54 .
    8. 田天伦,苏安双,贾青,王淼. 光伏螺旋桩基抗冻拔数值模拟. 水利科学与寒区工程. 2023(03): 1-6 .
    9. 吴炅,陈鹏飞,尹啸笛,郝洪策,梁成军. 桩体结构参数对螺旋桩-土冻胀性能的影响. 河南科学. 2023(07): 964-969 .
    10. 张学礼,崔强,张树林. 冻土地基中锥管板条装配式基础抗拔承载性能试验研究. 地质科技通报. 2022(02): 335-342 .
    11. 熊维林,葛洪林,富海鹰. 考虑非对称冻结的塔杆基础模型实验研究. 铁道科学与工程学报. 2022(04): 931-940 .
    12. 王卫东,崔强,韩杨春,张树林,孟宪乔. 高寒地区输电线路锥管板条装配式基础抗冻拔性能试验研究. 防灾减灾工程学报. 2022(03): 542-552 .
    13. 王超哲,吴进,王立兴,刘浩,杨紫健,吴文兵. 黏弹性地基中螺旋桩水平动力特性. 中南大学学报(自然科学版). 2022(06): 2279-2289 .
    14. 杨朝旭,任刚,殷卫永,韩战涛,任文博,李佳佳. 钢管螺旋桩防护公路膨胀土高边坡工程应用. 公路. 2022(07): 41-48 .
    15. 陈明伟,陈航杰. 桩型对冻土桩基冻胀特性的影响研究. 甘肃科技. 2022(09): 8-12 .
    16. 黄旭斌,盛煜,黄龙,彭尔兴,曹伟,张玺彦,何彬彬. 单向冻结条件下扩底桩抗冻拔能力试验研究. 工程科学与技术. 2021(01): 122-131 .
    17. 屈讼昭,郭咏华,王仪,张斌,张建明,孙清. 大锚片螺旋锚在粉质黏土中的下压承载性能. 土木与环境工程学报(中英文). 2021(05): 34-44 .
    18. 高晓静,孙铁成,李晓康,廖一鸣. 冻结作用下粉土-混凝土接触面抗拉强度试验研究. 冰川冻土. 2020(02): 499-507 .
    19. 黄旭斌,盛煜,黄龙,何彬彬,张玺彦. 季节冻土区扩底单桩受力性能研究进展与展望. 冰川冻土. 2020(04): 1220-1228 .
    20. 王希云,邵康,苏谦,刘凯文,邹婷. 单叶片螺旋钢桩竖向承载特性数值分析. 铁道标准设计. 2019(07): 66-71 .
    21. 王希云. 螺旋钢桩设计参数对抗压承载性能的影响研究. 路基工程. 2019(03): 57-61 .
    22. 邵康,苏谦,刘凯文,李婷,周珩. 竖向受压下考虑安装扰动螺旋钢桩数值模拟分析与现场载荷试验. 岩石力学与工程学报. 2019(12): 2570-2581 .

    Other cited types(21)

Catalog

    Article views (309) PDF downloads (164) Cited by(43)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return