• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Shuai, ZHANG Xiang-dong, JIA Bao-xin. Positioning of seismic sources in multilayered horizontal or inclined media[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1011-1020. DOI: 10.11779/CJGE201806006
Citation: WANG Shuai, ZHANG Xiang-dong, JIA Bao-xin. Positioning of seismic sources in multilayered horizontal or inclined media[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1011-1020. DOI: 10.11779/CJGE201806006

Positioning of seismic sources in multilayered horizontal or inclined media

More Information
  • Received Date: January 28, 2016
  • Published Date: June 24, 2018
  • In order to make full use of 3-D velocity structure of the rock mass in the mining area, based on the combined method of forward and inversion as an embryonic form, a new method for positioning of seismic sources in multilayered horizontal or inclined media is put forward. The wave front surface equation in multilayered horizontal media is derived. From the perspective of any field setup, based on the equation, the original time of earthquake is substituted into the nonlinear equations as an unknown quantity. The nonlinear equation set is established, of which the unknowns are equal to the number of nonlinear equations, thus a method for positioning of seismic sources based on forward of wave front is established. The time when the earthquake happens is obtained through inversion and corrected by curve fitting based on regular field setup in the positioning model combined with forward and inversion. The positioning model, based on forward of wave front, which deals with the time of earthquake as an unknown quantity in the nonlinear equations, is different. It obtains spatiotemporal parameters of seismic sources through nonlinear equations of four stations. The number of source parameters is reduced using the method of variable substitution, so the nonlinear system of the positioning model based on forward of wave front is simplified. The determination of iterative initial value is easier. The original geodetic coordinates of stations are rotated into those which are orthogonal or parallel to the interfaces between different media. The forward direction of wave front in the new coordinate system is parallel to the axis z. Thus the positioning model based on forward of wave front is extended to multilayered inclined media. The positioning model based on forward of wave front is an effective method to solve the problem of source positioning in multilayered inclined media. The calculated results of conditional numbers of 16 unknown parameters corresponding to 3 parameters of velocity structure under different conditions show that the conditional numbers of positioning model based on forward of wave front are all far less than 10, and the positioning model based on forward of wave front is in good state.
  • [1]
    谢兴楠, 叶根喜, 柳建新. 矿山尺度下微震定位精度及稳定性控制初探[J]. 岩土工程学报, 2014, 36(5): 899-904.
    (XIE Xing-nan, YE Gen-xi, LIU Jian-xin.On control of accuracy and stability of microseismic location in a mining scale[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 899-904. (in Chinese))
    [2]
    胡静云, 李庶林. 矿震P波到时拾取优化与降低震源定位误差应用研究[J]. 岩土工程学报, 2014, 36(10): 1940-1946.
    (HU Jing-yun, LI Shu-lin.Optimization of picking mine microseismic P-wave arrival time and its application in reducing error of source locating[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1940-1946. (in Chinese))
    [3]
    赵国彦, 邓青林, 马举. 基于FSWT时频分析的矿山微震信号分析与识别[J]. 岩土工程学报, 2015, 37(2): 306-312.
    (ZHAO Guo-yan, DENG Qing-lin, MA Ju.Recognition of mine microseismic signals based on FSWT time-frequency analysis[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 306-312. (in Chinese))
    [4]
    程爱平, 高永涛, 梁兴旺, 等. 煤矿底板潜在突水危险区微震识别研究[J]. 岩土工程学报, 2014, 36(9): 1727-1732.
    (CHENG Ai-ping, GAO Yong-tao, LIANG Xing-wang, et al.Identification of potential water inrush areas in coal floor by using microseismic monitoring technique[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1727-1732. (in Chinese))
    [5]
    彭府华, 李庶林, 程建勇, 等. 中尺度复杂岩体应力波传播特性的微震试验研究[J]. 岩土工程学报, 2014, 36(2): 312-319.
    (PENG Fu-hua, LI Shu-lin, CHENG Jian-yong, et al.Experimental study on characteristics of stress wave propagation in the mesoscale and complex rock mass by microseismic monitoring[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 312-319. (in Chinese))
    [6]
    姜福兴, 史先锋, 王存文, 等. 高应力区分层开采冲击地压事故发生机理研究[J]. 岩土工程学报, 2015, 37(6): 1123-1131.
    (JIANG Fu-xing, SHI Xian-feng, WANG Cun-wen, et al.Mechanical mechanism of rock burst accidents in slice mining face under high pressure[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1123-1131. (in Chinese))
    [7]
    潘立友, 陈理强, 张若祥. 深部两软煤层沿空巷道冲击地压成因与防治研究[J]. 岩土工程学报, 2015, 37(8): 1484-1489.
    (PAN Li-you, CHEN Li-jiang, ZHANG Re-xiang.Causes for rockburst and control of gob side entry in deep two soft coal seams[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1484-1489. (in Chinese))
    [8]
    姜福兴, 冯宇, KOUAME K A, 等. 高地应力特厚煤层“蠕变型”冲击机理研究[J]. 岩土工程学报, 2015, 37(10): 1762-1768.
    (JIANG Fu-xing, FENG Yu, KOUAME K A, et al.Mechanism of creep-induced rock burst in extra-thick coal seam under high ground stress[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1762-1768. (in Chinese))
    [9]
    杨伟利, 姜福兴, 杨鹏, 等. 特厚煤层冲击地压重复发生的机理研究[J]. 岩土工程学报, 2015, 37(11): 2045-2050.
    (YANG Wei-li, JIANG Fu-xing, YANG Peng, et al.Mechanism of repeated rock bursts in extra-thick coal seam[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2045-2050. (in Chinese))
    [10]
    于群, 唐春安, 李连崇, 等. 基于微震监测的锦屏二级水电站深埋隧洞岩爆孕育过程分析[J]. 岩土工程学报, 2014, 36(12): 2315-2322.
    (YU Qun, TANG Chun-an, LI Lian-chong, et al.Nucleation process of rockbursts based on microseismic monitoring of deep-buried tunnels for Jinping Ⅱ Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2315-2322. (in Chinese))
    [11]
    GEIGER L.Probability method for the determination of earth-quake epicenters from arrival time only[J]. Bull St Louis Univ, 1912, 8: 60-71.
    [12]
    陈棋福, 张跃勤, 周静. 数字观测时代的全球三维结构与地震定位研究[J]. 地震, 2001, 21(2): 29-40.
    (CHEN Qi-fu, ZHANG Yue-qin, ZHOU Jing.Review of earthquake location with three dimensional earth model for digital seismic observation[J]. Eearthquake, 2001, 21(2): 29-40. (in Chinese))
    [13]
    潘一山, 赵扬锋, 官福海, 等. 矿震监测定位系统的研究及应用[J]. 岩石力学与工程学报, 2007, 26(5): 1002-1011.
    (PAN Yi-shan, ZHAO Yang-feng, GUAN Fu-hai, et al.Study on rockburst monitoring and orientation system and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 1002-1011. (in Chinese))
    [14]
    张向东, 王帅, 赵彪, 等. 二层水平介质中震源的精确定位[J]. 岩土工程学报, 2014, 36(6): 1044-1050.
    (ZHANG Xiang-dong, WANG Shuai, ZHAO Biao, et al.Precise positioning in double-layer horizontal media[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1044-1050. (in Chinese))
    [15]
    张向东, 王帅, 贾宝新. 二层水平介质球面波正反演联用与震源定位[J].岩土工程学报, 2015, 37(2): 225-234.
    (ZHANG Xiang-dong, WANG Shuai, JIA Bao-xin.Positioning of seismic sources combined with forward and inversion of spherical wave in double-layer horizontal media[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 225-234. (in Chinese))
    [16]
    曾繁慧. 数值分析[M]. 徐州: 中国矿业大学出版社, 2009: 6-7.
    (ZENG Fan-hui.Numerical analysis[M]. Xuzhou: China University of Mining and Technology Press, 2009: 6-7. (in Chinese))
    [17]
    李庆扬, 王能超, 易大义, 等. 数值分析[M]. 5版. 北京: 清华大学出版社, 2008: 10-11.
    (LI Qing-yang, WANG Neng-chao, YI Da-yi, et al.Numerical analysis[M]. 5nd ed. Beijing: Tsinghua University Press, 2008: 10-11. (in Chinese))
    [18]
    同济大学应用数学系. 高等数学(下)[M]. 5版. 北京: 高等教育出版社, 2002: 34-35.
    (Department of Applied Mathematics, Tongji University. Higher mathematics(Vol 2)[M]. 5nd ed. Beijing: Higher Education Press, 2002: 34-35. (in Chinese))
  • Related Articles

    [1]GONG Jian-qing, PENG Wen-zhe. Three-dimensional finite element analysis of stress and deformation characteristics of energy piles under inclined loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2105-2111. DOI: 10.11779/CJGE202111017
    [2]HAN Lei, YE Guan-lin, WANG Jian-hua, YANG Guang-hui, ZHOU Song. Finite element analysis of impact of under-crossing of large shallow shield tunnel on riverbank[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 125-128. DOI: 10.11779/CJGE2015S1025
    [3]DU Chuang, DING Hong-yan, ZHANG Pu-yang, LI Jing. Analysis of steel sheet pile cofferdam using finite element method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 159-164. DOI: 10.11779/CJGE2014S2027
    [4]CAI Feng, HE Li-jun, ZHOU Xiao-peng, XU Mei-juan, MEI Guo-xiong. Finite element analysis of one-dimensional consolidation of undrained symmetry plane under continuous drainage boundary[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2141-2147.
    [5]SUN Hai-zhong. Application of finite element numerical analysis in excavation design[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 129-133.
    [6]HAN Jin-bao, XIONG Ju-hua, SUN Qing, YANG Min. Multi-factor three-dimensional finite element analysis of effects of tunnel construction on adjacent pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 339-344.
    [7]XU Wen-qiang, YUAN Fan-fan, WEI Chang-fu, YANG Cao-shuai. Bearing capacity of suction tapered bucket foundations based on three-dimensional finite element numerical analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 485-490.
    [8]HAN Bing, CAO Pinlu. Finite element analysis of interaction between soils and impact sampling bits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1560-1563.
    [9]ZHENG Hong, C. F. Lee, L. G. Tham, Ge Xiurun. Displacement-controlled method in finite element analysis and its applications[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 81-85.
    [10]Yu Zehong, Zhang Qisen. Finite Element Analysis for Mechanism of Geonets-Soil Interaction[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 79-85.
  • Cited by

    Periodical cited type(22)

    1. 黄飞虎,裴彦飞,苏谦,王鑫,杨鸿麟,李艳东. 螺旋钢桩加固边坡抗滑承载特性研究. 铁道科学与工程学报. 2024(02): 578-590 .
    2. 李绪勇,杨忠平,刘纲,李勇华,张益铭. 隔离式螺旋桩抗压承载与抗地基冻融特性. 岩土工程学报. 2024(06): 1187-1196 . 本站查看
    3. 车松阳,裴碧莹,徐洪俊. 螺旋桩室内模型试验设计及结果分析. 科技创新与应用. 2024(17): 68-71 .
    4. 周亚龙,王旭,蒋代军,刘德仁,何菲,晏昌,牛富俊. 青藏铁路接触网异型桩基抗冻拔模型试验研究. 西南交通大学学报. 2024(03): 677-684 .
    5. 孙铁成,杨逸,杨茜,董创奇. 开敞系统中冻土-混凝土界面抗拉强度试验研究. 石家庄铁道大学学报(自然科学版). 2024(02): 92-98 .
    6. 郝冬雪,王磊,陈榕,莫凯强,孔纲强,高宇聪. 冻融循环下粉砂中螺旋锚抗拔稳定模型试验研究. 岩土工程学报. 2023(01): 57-65 . 本站查看
    7. 陈强,李驰,高利平. 基于图像处理技术水分迁移对光伏桩冻拔稳定性影响的试验研究. 太阳能学报. 2023(01): 49-54 .
    8. 田天伦,苏安双,贾青,王淼. 光伏螺旋桩基抗冻拔数值模拟. 水利科学与寒区工程. 2023(03): 1-6 .
    9. 吴炅,陈鹏飞,尹啸笛,郝洪策,梁成军. 桩体结构参数对螺旋桩-土冻胀性能的影响. 河南科学. 2023(07): 964-969 .
    10. 张学礼,崔强,张树林. 冻土地基中锥管板条装配式基础抗拔承载性能试验研究. 地质科技通报. 2022(02): 335-342 .
    11. 熊维林,葛洪林,富海鹰. 考虑非对称冻结的塔杆基础模型实验研究. 铁道科学与工程学报. 2022(04): 931-940 .
    12. 王卫东,崔强,韩杨春,张树林,孟宪乔. 高寒地区输电线路锥管板条装配式基础抗冻拔性能试验研究. 防灾减灾工程学报. 2022(03): 542-552 .
    13. 王超哲,吴进,王立兴,刘浩,杨紫健,吴文兵. 黏弹性地基中螺旋桩水平动力特性. 中南大学学报(自然科学版). 2022(06): 2279-2289 .
    14. 杨朝旭,任刚,殷卫永,韩战涛,任文博,李佳佳. 钢管螺旋桩防护公路膨胀土高边坡工程应用. 公路. 2022(07): 41-48 .
    15. 陈明伟,陈航杰. 桩型对冻土桩基冻胀特性的影响研究. 甘肃科技. 2022(09): 8-12 .
    16. 黄旭斌,盛煜,黄龙,彭尔兴,曹伟,张玺彦,何彬彬. 单向冻结条件下扩底桩抗冻拔能力试验研究. 工程科学与技术. 2021(01): 122-131 .
    17. 屈讼昭,郭咏华,王仪,张斌,张建明,孙清. 大锚片螺旋锚在粉质黏土中的下压承载性能. 土木与环境工程学报(中英文). 2021(05): 34-44 .
    18. 高晓静,孙铁成,李晓康,廖一鸣. 冻结作用下粉土-混凝土接触面抗拉强度试验研究. 冰川冻土. 2020(02): 499-507 .
    19. 黄旭斌,盛煜,黄龙,何彬彬,张玺彦. 季节冻土区扩底单桩受力性能研究进展与展望. 冰川冻土. 2020(04): 1220-1228 .
    20. 王希云,邵康,苏谦,刘凯文,邹婷. 单叶片螺旋钢桩竖向承载特性数值分析. 铁道标准设计. 2019(07): 66-71 .
    21. 王希云. 螺旋钢桩设计参数对抗压承载性能的影响研究. 路基工程. 2019(03): 57-61 .
    22. 邵康,苏谦,刘凯文,李婷,周珩. 竖向受压下考虑安装扰动螺旋钢桩数值模拟分析与现场载荷试验. 岩石力学与工程学报. 2019(12): 2570-2581 .

    Other cited types(21)

Catalog

    Article views (215) PDF downloads (135) Cited by(43)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return