• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Sheng, LIU Xue-qing, XU Shuo, XIONG Yong-lin, ZHANG Feng. Mechanical characteristics of saturated soils under thermo-cyclic loads[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 994-1001. DOI: 10.11779/CJGE201806004
Citation: ZHANG Sheng, LIU Xue-qing, XU Shuo, XIONG Yong-lin, ZHANG Feng. Mechanical characteristics of saturated soils under thermo-cyclic loads[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 994-1001. DOI: 10.11779/CJGE201806004

Mechanical characteristics of saturated soils under thermo-cyclic loads

More Information
  • Received Date: March 22, 2017
  • Published Date: June 24, 2018
  • The impact of temperature on the large deformation of nuclear waste disposal, geothermal extraction and storage under cyclic load is should be considered. In the framework of super-subloading surface, the concept of equivalent stress is introduced to establish a constitutive model. The model can represent the mechanical characteristics of saturated clay affected by thermo-cyclic loads. Based on the experimental data, the model is validated. The results show that the constitutive model can be used to calculate the experimental data. It can describe the alternating mobility of saturated soils at different temperatures by controlling the parameters of the model, and it is revealed that the increase of temperature is the inherent resistance to deformation mechanism. The model is of reference significance for the mechanical properties of saturated sand under temperature and cyclic loads.
  • [1]
    康健, 赵明鹏, 赵阳升, 等. 随机介质固热耦合模型与高温岩体地热开发人工储留层二次破裂数值模拟[J]. 岩石力学与工程学报, 2005, 24(6): 969-974.
    (KANG jian, ZHAO Ming-peng, ZHAO Yang-sheng, et al. Random non- homogeneous solid-heat coupled model and numerical simulations of second fracturing for man-made-reserve stratum in HDR[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(6): 969-974. (in Chinese))
    [2]
    RADHAKRISHNA H S, CHAN H T, CRAWFORD A M, et al.Thermal and physical properties of candidate buffer-backfill materials[J]. Canadian Geotechnical Journal, 1989, 26(26): 629-639.
    [3]
    白冰, 陈星欣. 一种用于饱和土的热固结试验装置及其应用[J]. 岩土工程学报, 2011, 33(6): 896-900.
    (BAI Bing, CHEN Xing-xin.Test apparatus for thermal consolidation of saturated soils and its application[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 896-900. (in Chinese))
    [4]
    YAO Y P, YANG Y F, LEI N.UH model considering temperature effects[J]. Science China Technological Sciences, 2011, 54(1): 190-202.
    [5]
    YAO Y P, HOU W, ZHOU A N.UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469.
    [6]
    YAO Y P, GAO Z W, ZHAO J D, et al.Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic Hvorslev envelope[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(7): 860-868.
    [7]
    CAMPANELLA R G, MITCHELL J K.Influence of temperature variation on soil behavior[J]. Journal of the Soil Mechanics & Foundations Division, 1968, 94: 609-734.
    [8]
    CEKEREVAC C, LALOUI L.Experimental analysis of the cyclic behaviour of Kaolin at high temperature[J]. Géotechnique, 2015, 60(8): 651-655.
    [9]
    LALOUI L, CEKEREVAC C.Non-isothermal plasticity model for cyclic behaviour of soils[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2008, 32(5): 437-460.
    [10]
    LAGUROS J G.Effect of temperature on some engineering properties of clay soils[J]. Highway Research Board Special Report, 1969: 186-193.
    [11]
    ZHANG S, LENG W, ZHANG F, et al.A simple thermo-elastoplastic model for geomaterials[J]. International Journal of Plasticity, 2012, 34(34): 93-113.
    [12]
    ZHANG S, ZHANG F.A thermo-elasto-viscoplastic model for soft sedimentary rock[J]. Soils and Foundations, 2009, 49(4): 583-595.
    [13]
    YANG Z, ELGAMAL A.Multi-surface cyclic plasticity sand model with lode angle effect[J]. Geotechnical and Geological Engineering, 2008, 26(3): 335-348.
    [14]
    ELGAMAL A, YANG Z, PARRA E, et al.Modeling of cyclic mobility in saturated cohesionless soils[J]. International Journal of Plasticity, 2003, 19(6): 883-905.
    [15]
    张建民. 砂土动力学若干基本理论探究[J]. 岩土工程学报, 2012, 34(1): 1-50.
    (ZHANG Jian-min.New advances in basic theories of sand dynamics[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 1-50. (in Chinese))
    [16]
    张建民, 罗刚. 考虑可逆与不可逆剪胀的粗粒土动本构模型[J]. 岩土工程学报, 2005, 27(2): 178-184.
    (ZHANG Jian-min, LUO Gang.A new cyclic constitutive model for granular soil considering reversible and irreversible dilatancy[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(2): 178-184. (in Chinese))
    [17]
    ASAOKA A, NODA T, YAMADA E, et al.An elasto-plastic description of two distinct volume change mechanisms of soils[J]. Soils and Foundations, 2002, 42(5): 47-57.
    [18]
    姚仰平, 万征, 秦振华. 动力UH模型及其有限元应用[J]. 力学学报, 2012, 44(1): 132-139.
    (YAO Yang-ping, WAN Zheng, QIN Zhen-hua.Dynamic UH model for sands and its application in FEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 132-139. (in Chinese))
    [19]
    ZHANG F, YE B, NODA T, et al.Explanation of cyclic mobility of soils: approach by stress-induced anisotropy[J]. Soils and Foundations, 2007, 47(4): 635-648.
  • Related Articles

    [1]GONG Jian-qing, PENG Wen-zhe. Three-dimensional finite element analysis of stress and deformation characteristics of energy piles under inclined loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2105-2111. DOI: 10.11779/CJGE202111017
    [2]HAN Lei, YE Guan-lin, WANG Jian-hua, YANG Guang-hui, ZHOU Song. Finite element analysis of impact of under-crossing of large shallow shield tunnel on riverbank[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 125-128. DOI: 10.11779/CJGE2015S1025
    [3]DU Chuang, DING Hong-yan, ZHANG Pu-yang, LI Jing. Analysis of steel sheet pile cofferdam using finite element method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 159-164. DOI: 10.11779/CJGE2014S2027
    [4]CAI Feng, HE Li-jun, ZHOU Xiao-peng, XU Mei-juan, MEI Guo-xiong. Finite element analysis of one-dimensional consolidation of undrained symmetry plane under continuous drainage boundary[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2141-2147.
    [5]SUN Hai-zhong. Application of finite element numerical analysis in excavation design[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 129-133.
    [6]HAN Jin-bao, XIONG Ju-hua, SUN Qing, YANG Min. Multi-factor three-dimensional finite element analysis of effects of tunnel construction on adjacent pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 339-344.
    [7]XU Wen-qiang, YUAN Fan-fan, WEI Chang-fu, YANG Cao-shuai. Bearing capacity of suction tapered bucket foundations based on three-dimensional finite element numerical analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 485-490.
    [8]HAN Bing, CAO Pinlu. Finite element analysis of interaction between soils and impact sampling bits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1560-1563.
    [9]ZHENG Hong, C. F. Lee, L. G. Tham, Ge Xiurun. Displacement-controlled method in finite element analysis and its applications[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 81-85.
    [10]Yu Zehong, Zhang Qisen. Finite Element Analysis for Mechanism of Geonets-Soil Interaction[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 79-85.
  • Cited by

    Periodical cited type(22)

    1. 黄飞虎,裴彦飞,苏谦,王鑫,杨鸿麟,李艳东. 螺旋钢桩加固边坡抗滑承载特性研究. 铁道科学与工程学报. 2024(02): 578-590 .
    2. 李绪勇,杨忠平,刘纲,李勇华,张益铭. 隔离式螺旋桩抗压承载与抗地基冻融特性. 岩土工程学报. 2024(06): 1187-1196 . 本站查看
    3. 车松阳,裴碧莹,徐洪俊. 螺旋桩室内模型试验设计及结果分析. 科技创新与应用. 2024(17): 68-71 .
    4. 周亚龙,王旭,蒋代军,刘德仁,何菲,晏昌,牛富俊. 青藏铁路接触网异型桩基抗冻拔模型试验研究. 西南交通大学学报. 2024(03): 677-684 .
    5. 孙铁成,杨逸,杨茜,董创奇. 开敞系统中冻土-混凝土界面抗拉强度试验研究. 石家庄铁道大学学报(自然科学版). 2024(02): 92-98 .
    6. 郝冬雪,王磊,陈榕,莫凯强,孔纲强,高宇聪. 冻融循环下粉砂中螺旋锚抗拔稳定模型试验研究. 岩土工程学报. 2023(01): 57-65 . 本站查看
    7. 陈强,李驰,高利平. 基于图像处理技术水分迁移对光伏桩冻拔稳定性影响的试验研究. 太阳能学报. 2023(01): 49-54 .
    8. 田天伦,苏安双,贾青,王淼. 光伏螺旋桩基抗冻拔数值模拟. 水利科学与寒区工程. 2023(03): 1-6 .
    9. 吴炅,陈鹏飞,尹啸笛,郝洪策,梁成军. 桩体结构参数对螺旋桩-土冻胀性能的影响. 河南科学. 2023(07): 964-969 .
    10. 张学礼,崔强,张树林. 冻土地基中锥管板条装配式基础抗拔承载性能试验研究. 地质科技通报. 2022(02): 335-342 .
    11. 熊维林,葛洪林,富海鹰. 考虑非对称冻结的塔杆基础模型实验研究. 铁道科学与工程学报. 2022(04): 931-940 .
    12. 王卫东,崔强,韩杨春,张树林,孟宪乔. 高寒地区输电线路锥管板条装配式基础抗冻拔性能试验研究. 防灾减灾工程学报. 2022(03): 542-552 .
    13. 王超哲,吴进,王立兴,刘浩,杨紫健,吴文兵. 黏弹性地基中螺旋桩水平动力特性. 中南大学学报(自然科学版). 2022(06): 2279-2289 .
    14. 杨朝旭,任刚,殷卫永,韩战涛,任文博,李佳佳. 钢管螺旋桩防护公路膨胀土高边坡工程应用. 公路. 2022(07): 41-48 .
    15. 陈明伟,陈航杰. 桩型对冻土桩基冻胀特性的影响研究. 甘肃科技. 2022(09): 8-12 .
    16. 黄旭斌,盛煜,黄龙,彭尔兴,曹伟,张玺彦,何彬彬. 单向冻结条件下扩底桩抗冻拔能力试验研究. 工程科学与技术. 2021(01): 122-131 .
    17. 屈讼昭,郭咏华,王仪,张斌,张建明,孙清. 大锚片螺旋锚在粉质黏土中的下压承载性能. 土木与环境工程学报(中英文). 2021(05): 34-44 .
    18. 高晓静,孙铁成,李晓康,廖一鸣. 冻结作用下粉土-混凝土接触面抗拉强度试验研究. 冰川冻土. 2020(02): 499-507 .
    19. 黄旭斌,盛煜,黄龙,何彬彬,张玺彦. 季节冻土区扩底单桩受力性能研究进展与展望. 冰川冻土. 2020(04): 1220-1228 .
    20. 王希云,邵康,苏谦,刘凯文,邹婷. 单叶片螺旋钢桩竖向承载特性数值分析. 铁道标准设计. 2019(07): 66-71 .
    21. 王希云. 螺旋钢桩设计参数对抗压承载性能的影响研究. 路基工程. 2019(03): 57-61 .
    22. 邵康,苏谦,刘凯文,李婷,周珩. 竖向受压下考虑安装扰动螺旋钢桩数值模拟分析与现场载荷试验. 岩石力学与工程学报. 2019(12): 2570-2581 .

    Other cited types(21)

Catalog

    Article views (419) PDF downloads (294) Cited by(43)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return