• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
KE Han, HU Jie, WU Xiao-wen, MENG Meng. Investigation into leachate transport in MSW landfills under pumping of vertical wells[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 786-793. DOI: 10.11779/CJGE201805002
Citation: KE Han, HU Jie, WU Xiao-wen, MENG Meng. Investigation into leachate transport in MSW landfills under pumping of vertical wells[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 786-793. DOI: 10.11779/CJGE201805002

Investigation into leachate transport in MSW landfills under pumping of vertical wells

More Information
  • Revised Date: March 20, 2017
  • Published Date: May 24, 2018
  • Owing to the composition diversity of MSW and the compacted nature in landfills, the leachate transport in landfills is found to be dominated by the preferential flow and shows significant anisotropy (i.e., horizontal permeability higher than vertical one). The vertical well pumping and leachate level recovery tests are conducted at Chengdu landfill. Meanwhile, the leachate distribution and transportation characteristics are examined quantitatively and qualitatively using electrical resistivity tomography (ERT). Through the vertical well pumping and leachate level recovery tests, it is found that the leachate transport in landfills is highly heterogeneous. The performance of vertical wells at different regions of this landfill shows great difference, and the hydraulic conductivity of the surrounding waste ranges from 2.35×10-5 to 3.90×10-4 cm/s. The leachate levels in the surrounding monitoring wells change unusually under pumping of vertical wells. It is mainly due to the existence of preferential flow in the leachate transportation process. In addition, the monitoring results on changes of waste resistivity in the process of leachate pumping and recirculation by ERT further reveal that there are significant anisotropy and preferential flow characteristics in leachate transportation. And the angle between leachate seepage path and horizontal direction is found to be 0~30°.
  • [1]
    陈云敏, 兰吉武, 李育超, 等. 垃圾填埋场渗滤液水位雍高及工程控制[J]. 岩石力学与工程学报, 2014, 33(1): 154-163. (CHEN Yun-min, LAN Ji-wu, LI Yu-chao, et al. Development and control of leachate mound in MSW landfills[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 154-163. (in Chinese))
    [2]
    ZHAN T L T, XU X B, CHEN Y M, et al. Dependence of gas collection efficiency on leachate level at wet landfills of municipal solid wastes and its improvement methods in China[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(4): 1-11.
    [3]
    KOERNER R M, SOONG T Y. Leachate in landfills: the stability issues[J]. Geotextiles and Geomembranes, 2000, 18(5): 293-309.
    [4]
    张文杰, 陈云敏. 垃圾填埋场抽水试验及降水方案设计[J]. 岩土力学, 2010, 31(1): 210-215. (ZHANG Wen-jie, CHEN Yun-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. Rock and Soil Mechanics, 2010, 31(1): 210-215. (in Chinese))
    [5]
    詹良通, 徐 辉, 兰吉武, 等. 填埋垃圾渗透特性室内外测试研究[J]. 浙江大学学报(工学版), 2014, 48(3): 478-486. (ZHAN Lang-tong, XU Hui, LAN Ji-wu, et al. Field and laboratory study on hydraulic conductivity of MSW[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(3): 478-486. (in Chinese))
    [6]
    BURROWS M R. Landfill hydrogeology and the hydraulic properties of in situ landfilled material[D]. London: University of London, 1998.
    [7]
    ROSQVIST N H, DOLLAR L H, FOURIE A B. Preferential flow in municipal solid waste and implications for long-term leachate quality: valuation of laboratory-scale experiments[J]. Waste Management & Research, 2005, 23(4): 367-380.
    [8]
    WOODMAN N D. Modelling of transport in highly heterogeneous porous media, with application to the flushing of waste[D]. London: University College London, 2007.
    [9]
    柯 瀚, 吴小雯, 张 俊, 等. 基于优势流及各向异性随上覆压力变化的填埋体饱和渗流模型[J]. 岩土工程学报, 2016, 38(11): 1957-1964. (KE Han, WU Xiao-wen, ZHANG Jun, et al. Modeling saturated permeability of municipal solid waste basing on the compression changes of its preferential flow and anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1957-1964. (in Chinese))
    [10]
    LANDVA A O, PELKEY S G, VALSANGKAR A J. Coefficient of permeability of municipal refuse[C]// Proceedings of the 3rd International Congress on Environmental Geotechnics. Lisbon, 1998: 63-68.
    [11]
    HUDSON A P. Evaluation of the vertical and horizontal hydraulic conductivities of household wastes[D]. Southampton: University of Southampton, 2007.
    [12]
    SINGH K, KADAMBALA R, JAIN P, et al. Anisotropy estimation of compacted municipal solid waste using pressurized vertical well liquids injection[J]. Waste Management & Research, 2014, 32(6): 482-491.
    [13]
    CJJ 176—2012 生活垃圾卫生填埋场岩土工程技术规范[S]. 2012. (CJJ 176—2012 Technical code for geotechnical engineering of municipal solid waste sanitary landfill[S]. 2012. (in Chinese))
    [14]
    GB/T 50123—1999 土工试验方法标准[S]. 1999. (GB/T 50123—1999 Standard for soil test method[S]. 1999. (in Chinese))
    [15]
    陈崇希, 林 敏. 地下水动力学[M]. 武汉: 中国地质大学出版社, 1999. (CHEN Chong-xi, LIN Min. Groundwater dynamics [M]. Wuhan: China University of Geosciences Press, 1999. (in Chinese))
    [16]
    SL320—2005 水利水电工程钻孔抽水试验规程[S]. 2005. (SL320—2005 Borehole pumping test procedures for water resources and hydropower engineering[S]. 2005. (in Chinese))
    [17]
    CLÉMENT R, OXARANGO L, DESCLOITRES M. Contribution of 3-D time-lapse ERT to the study of leachate recirculation in a landfill[J]. Waste Management, 2011, 31(3): 457-467.
    [18]
    ROSQUIST H, LEROUX V, DAHLIN T, et al. Mapping landfill gas migration using resistivity monitoring[J]. Waste and Resource Management, 2011, 164(1): 3-15.
    [19]
    LING C, ZHOU Q, XUE Y, et al. Application of electrical resistivity tomography to evaluate the variation in moisture content of waste during 2 months of degradation[J]. Environmental Earth Sciences, 2013, 68(1): 57-67.
    [20]
    蒋小明. 高密度电阻率法用于垃圾填埋体液气分布探测的试验研究[D]. 杭州: 浙江大学, 2016. (JIANG Xiao-ming. An experimental study on detection of leachate and gas distribution in municipal solid waste landfill using electrical resistivity tomography[D]. Hangzhou: Zhejiang University, 2016. (in Chinese))
    [21]
    GRELLIER S, REDDY K R, GANGATHULASI J, et al. Correlation between electrical resistivity and moisture content of municipal solid waste in bioreactor landfill[J]. Geoenvironmental Engineering, 2007, 226: 1-14.
  • Related Articles

    [1]WANG Li-qin, ZHAO Cong, HU Xiang-yang, LI Lun, WANG Zheng, LI Kai-yu. Strength and structural anisotropy of loess[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 25-29. DOI: 10.11779/CJGE2021S1005
    [2]WU Ze-xiang, CHEN Jia-ying, YIN Zhen-yu. Finite element simulation of simple shear tests considering inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1157-1165. DOI: 10.11779/CJGE202106020
    [3]JIANG Ming-jing, ZHANG An, FU Chang, LI Tao. Macro and micro-behaviors of anisotropy granular soils using 3D DEM simulation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2165-2172. DOI: 10.11779/CJGE201712003
    [4]KE Han, WU Xiao-wen, ZHANG Jun, CHEN Yun-min, HU-Jie. Modeling saturated permeability of municipal solid waste based on compression change of its preferential flow and anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1957-1964. DOI: 10.11779/CJGE201611004
    [5]LIU Ting-fa, NIE Yan-xia, HU Li-ming, ZHOU Qi-you, WEN Qing-bo. Model tests on moisture migration based on high-density electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 761-768. DOI: 10.11779/CJGE201604023
    [6]QI Yang, TANG Xin-jun, LI Xiao-qing. Stress-induced anisotropy of coarse-grained soil by true triaxial tests based on PFC[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2292-2300. DOI: 10.11779/CJGE201512020
    [7]ZHOU Jian, LIU Zheng-yi, YAN Jia-jia. Effects of inherent and induced anisotropies on strength and deformation characteristics of soft clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 666-670.
    [8]LIU Yang. Anisotropic strength criteria of sand: inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1526-1534.
    [9]WU Shiyu, LI Hong. Analysis for axisymmetric seepage flows in homogeneous and anisotropic strata[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 581-583.
    [10]Wang Jin′an, Xie Heping. On anisotropic fractal and multi fractal properties of rock fracture surfaces[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(6): 19-24.
  • Cited by

    Periodical cited type(9)

    1. 史金权,王磊,张轩铭,赵航,吴秉阳,赵航行,刘汉龙,肖杨. 微生物加固钙质砂地基电阻率特性试验研究. 岩土工程学报. 2024(02): 244-253 . 本站查看
    2. 吴育林,陈展,王哲,王振梁,沈婷婷. 原位水力循环修复污染土壤土柱试验研究. 工程勘察. 2023(06): 38-47 .
    3. 陈宏信,吕东江,冯世进,张晓磊,吴少杰. 某低厨余填埋场垃圾物理力学特性演化规律. 岩土工程学报. 2023(09): 1850-1858 . 本站查看
    4. 史鹏钰,宗一杰,滕开庆,刘健军,肖良. 非承压含水层定水头抽水两区井流数值模型研究. 煤田地质与勘探. 2023(10): 124-133 .
    5. 章涛,施建勇,吴珣,韩尚宇,纪晓磊,张慧华. 单井注水改变填埋场中垃圾土温度的模拟. 岩土力学. 2022(02): 499-510 .
    6. 盛丰,文鼎,熊祎玮,王康. 基于电阻率层析成像技术的农田土壤优先流原位动态监测. 农业工程学报. 2021(08): 117-124 .
    7. 杜鹏辉,余建民,赵贵章. 亚黏土典型剖面电阻率-含水率关系模型研究. 水利与建筑工程学报. 2021(04): 36-40 .
    8. 张泰丽,闫永帅,伍剑波,孙强,朱延辉. 粉质黏土天然边坡含水率-电阻率模型研究. 灌溉排水学报. 2020(S1): 126-129 .
    9. 闫亚景,闫永帅,赵贵章,张泰丽,孙强. 基于高密度电法的天然边坡水分运移规律研究. 岩土力学. 2019(07): 2807-2814 .

    Other cited types(12)

Catalog

    Article views (331) PDF downloads (272) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return