• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
KE Han, HU Jie, WU Xiao-wen, MENG Meng. Investigation into leachate transport in MSW landfills under pumping of vertical wells[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 786-793. DOI: 10.11779/CJGE201805002
Citation: KE Han, HU Jie, WU Xiao-wen, MENG Meng. Investigation into leachate transport in MSW landfills under pumping of vertical wells[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 786-793. DOI: 10.11779/CJGE201805002

Investigation into leachate transport in MSW landfills under pumping of vertical wells

More Information
  • Revised Date: March 20, 2017
  • Published Date: May 24, 2018
  • Owing to the composition diversity of MSW and the compacted nature in landfills, the leachate transport in landfills is found to be dominated by the preferential flow and shows significant anisotropy (i.e., horizontal permeability higher than vertical one). The vertical well pumping and leachate level recovery tests are conducted at Chengdu landfill. Meanwhile, the leachate distribution and transportation characteristics are examined quantitatively and qualitatively using electrical resistivity tomography (ERT). Through the vertical well pumping and leachate level recovery tests, it is found that the leachate transport in landfills is highly heterogeneous. The performance of vertical wells at different regions of this landfill shows great difference, and the hydraulic conductivity of the surrounding waste ranges from 2.35×10-5 to 3.90×10-4 cm/s. The leachate levels in the surrounding monitoring wells change unusually under pumping of vertical wells. It is mainly due to the existence of preferential flow in the leachate transportation process. In addition, the monitoring results on changes of waste resistivity in the process of leachate pumping and recirculation by ERT further reveal that there are significant anisotropy and preferential flow characteristics in leachate transportation. And the angle between leachate seepage path and horizontal direction is found to be 0~30°.
  • [1]
    陈云敏, 兰吉武, 李育超, 等. 垃圾填埋场渗滤液水位雍高及工程控制[J]. 岩石力学与工程学报, 2014, 33(1): 154-163. (CHEN Yun-min, LAN Ji-wu, LI Yu-chao, et al. Development and control of leachate mound in MSW landfills[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 154-163. (in Chinese))
    [2]
    ZHAN T L T, XU X B, CHEN Y M, et al. Dependence of gas collection efficiency on leachate level at wet landfills of municipal solid wastes and its improvement methods in China[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(4): 1-11.
    [3]
    KOERNER R M, SOONG T Y. Leachate in landfills: the stability issues[J]. Geotextiles and Geomembranes, 2000, 18(5): 293-309.
    [4]
    张文杰, 陈云敏. 垃圾填埋场抽水试验及降水方案设计[J]. 岩土力学, 2010, 31(1): 210-215. (ZHANG Wen-jie, CHEN Yun-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. Rock and Soil Mechanics, 2010, 31(1): 210-215. (in Chinese))
    [5]
    詹良通, 徐 辉, 兰吉武, 等. 填埋垃圾渗透特性室内外测试研究[J]. 浙江大学学报(工学版), 2014, 48(3): 478-486. (ZHAN Lang-tong, XU Hui, LAN Ji-wu, et al. Field and laboratory study on hydraulic conductivity of MSW[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(3): 478-486. (in Chinese))
    [6]
    BURROWS M R. Landfill hydrogeology and the hydraulic properties of in situ landfilled material[D]. London: University of London, 1998.
    [7]
    ROSQVIST N H, DOLLAR L H, FOURIE A B. Preferential flow in municipal solid waste and implications for long-term leachate quality: valuation of laboratory-scale experiments[J]. Waste Management & Research, 2005, 23(4): 367-380.
    [8]
    WOODMAN N D. Modelling of transport in highly heterogeneous porous media, with application to the flushing of waste[D]. London: University College London, 2007.
    [9]
    柯 瀚, 吴小雯, 张 俊, 等. 基于优势流及各向异性随上覆压力变化的填埋体饱和渗流模型[J]. 岩土工程学报, 2016, 38(11): 1957-1964. (KE Han, WU Xiao-wen, ZHANG Jun, et al. Modeling saturated permeability of municipal solid waste basing on the compression changes of its preferential flow and anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1957-1964. (in Chinese))
    [10]
    LANDVA A O, PELKEY S G, VALSANGKAR A J. Coefficient of permeability of municipal refuse[C]// Proceedings of the 3rd International Congress on Environmental Geotechnics. Lisbon, 1998: 63-68.
    [11]
    HUDSON A P. Evaluation of the vertical and horizontal hydraulic conductivities of household wastes[D]. Southampton: University of Southampton, 2007.
    [12]
    SINGH K, KADAMBALA R, JAIN P, et al. Anisotropy estimation of compacted municipal solid waste using pressurized vertical well liquids injection[J]. Waste Management & Research, 2014, 32(6): 482-491.
    [13]
    CJJ 176—2012 生活垃圾卫生填埋场岩土工程技术规范[S]. 2012. (CJJ 176—2012 Technical code for geotechnical engineering of municipal solid waste sanitary landfill[S]. 2012. (in Chinese))
    [14]
    GB/T 50123—1999 土工试验方法标准[S]. 1999. (GB/T 50123—1999 Standard for soil test method[S]. 1999. (in Chinese))
    [15]
    陈崇希, 林 敏. 地下水动力学[M]. 武汉: 中国地质大学出版社, 1999. (CHEN Chong-xi, LIN Min. Groundwater dynamics [M]. Wuhan: China University of Geosciences Press, 1999. (in Chinese))
    [16]
    SL320—2005 水利水电工程钻孔抽水试验规程[S]. 2005. (SL320—2005 Borehole pumping test procedures for water resources and hydropower engineering[S]. 2005. (in Chinese))
    [17]
    CLÉMENT R, OXARANGO L, DESCLOITRES M. Contribution of 3-D time-lapse ERT to the study of leachate recirculation in a landfill[J]. Waste Management, 2011, 31(3): 457-467.
    [18]
    ROSQUIST H, LEROUX V, DAHLIN T, et al. Mapping landfill gas migration using resistivity monitoring[J]. Waste and Resource Management, 2011, 164(1): 3-15.
    [19]
    LING C, ZHOU Q, XUE Y, et al. Application of electrical resistivity tomography to evaluate the variation in moisture content of waste during 2 months of degradation[J]. Environmental Earth Sciences, 2013, 68(1): 57-67.
    [20]
    蒋小明. 高密度电阻率法用于垃圾填埋体液气分布探测的试验研究[D]. 杭州: 浙江大学, 2016. (JIANG Xiao-ming. An experimental study on detection of leachate and gas distribution in municipal solid waste landfill using electrical resistivity tomography[D]. Hangzhou: Zhejiang University, 2016. (in Chinese))
    [21]
    GRELLIER S, REDDY K R, GANGATHULASI J, et al. Correlation between electrical resistivity and moisture content of municipal solid waste in bioreactor landfill[J]. Geoenvironmental Engineering, 2007, 226: 1-14.
  • Cited by

    Periodical cited type(4)

    1. 王琼,张佳南,高岑,苏薇,刘樟荣,叶为民. 基于梯度提升决策树算法的膨润土膨胀力预测. 世界核地质科学. 2023(03): 775-786 .
    2. 朱赞成,李纪伟,林法力,陈雰,孙德安,刘藤. 不同矿物成分下土样脱附曲线试验研究. 岩土工程学报. 2020(01): 175-180 . 本站查看
    3. 凌辉,王驹,刘月妙,高玉峰,陈伟明,佟强. 近场核素释放率对缓冲材料参数的敏感性研究. 辐射防护. 2019(05): 403-409 .
    4. 吴恒川,刘俊新,葛方东. 膨润土-砂混合物碱热耦合老化后的膨胀性能. 西南科技大学学报. 2019(04): 51-56 .

    Other cited types(5)

Catalog

    Article views PDF downloads Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return