Citation: | SHI Jinquan, WANG Lei, ZHANG Xuanming, ZHAO Hang, WU Bingyang, ZHAO Hanghang, LIU Hanlong, XIAO Yang. Experimental study on electricity resistivity of MICP-treated calcareous sand foundation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 244-253. DOI: 10.11779/CJGE20221281 |
[1] |
DEJONG J T, SOGA K, KAVAZANJIAN E, et al. Biogeochemical processes and geotechnical applications: progress, opportunities and challenges[J]. Géotechnique, 2013, 63(4): 287-301. doi: 10.1680/geot.SIP13.P.017
|
[2] |
AMARAKOON G G N N, KAWASAKI S. Factors affecting sand solidification using MICP with Pararhodobacter sp[J]. Materials Transactions, 2018, 59(1): 72-81. doi: 10.2320/matertrans.M-M2017849
|
[3] |
FENG K, MONTOYA B M. Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(1): 04015057. doi: 10.1061/(ASCE)GT.1943-5606.0001379
|
[4] |
VAN PAASSEN L A, GHOSE R, VAN DER LINDEN T J M, et al. Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1721-1728. doi: 10.1061/(ASCE)GT.1943-5606.0000382
|
[5] |
XIAO Y, ZHANG Z C, STUEDLEIN A W, et al. Liquefaction modeling for biocemented calcareous sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(12): 04021149. doi: 10.1061/(ASCE)GT.1943-5606.0002666
|
[6] |
肖鹏, 刘汉龙, 史金权, 等. 微生物加固钙质砂地基动力响应特性研究[J]. 岩土工程学报, 2023, 45(6): 1303-1313.
XIAO Peng, LIU Hanlong, SHI Jinquan, et al. Dynamic response of calcareous foundation reinforced by microbially induced calcite precipitation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1303-1313. (in Chinese)
|
[7] |
CHU J, IVANOV V, STABNIKOV V, et al. Microbial method for construction of an aquaculture pond in sand[J]. Géotechnique, 2013, 63(10): 871-875. doi: 10.1680/geot.SIP13.P.007
|
[8] |
XIAO Y, ZHOU W, SHI J Q, et al. Erosion of biotreated field-scale slopes under rainfalls[J]. Journal of Performance of Constructed Facilities, 2022, 36(3): 871-875.
|
[9] |
XIAO Y, WANG Y, WANG S, et al. Homogeneity and mechanical behaviors of sands improved by a temperature-controlled one-phase MICP method[J]. Acta Geotechnica, 2021, 16(5): 1417-1427. doi: 10.1007/s11440-020-01122-4
|
[10] |
ARPAJIRAKUL S, PUNGRASMI W, LIKITLERSUANG S. Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement[J]. Construction and Building Materials, 2021, 282: 122722. doi: 10.1016/j.conbuildmat.2021.122722
|
[11] |
彭劼, 冯清鹏, 孙益成. 温度对微生物诱导碳酸钙沉积加固砂土的影响研究[J]. 岩土工程学报, 2018, 40(6): 1048-1055. doi: 10.11779/CJGE201806010
PENG Jie, FENG Qingpeng, SUN Yicheng. Influences of temperatures on MICP-treated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1048-1055. (in Chinese) doi: 10.11779/CJGE201806010
|
[12] |
尹黎阳, 唐朝生, 谢约翰, 等. 微生物矿化作用改善岩土材料性能的影响因素[J]. 岩土力学, 2019, 40(7): 2525-2546.
YIN Liyang, TANG Chaosheng, XIE Yuehan, et al. Factors affecting improvement in engineering properties of geomaterials by microbial-induced calcite precipitation[J]. Rock and Soil Mechanics, 2019, 40(7): 2525-2546. (in Chinese)
|
[13] |
马国梁, 何想, 路桦铭, 等. 高岭土微粒固载成核微生物固化粗砂强度[J]. 岩土工程学报, 2021, 43(2): 290-299. doi: 10.11779/CJGE202102009
MA Guoliang, HE Xiang, LU Huaming, et al. Strength of biocemented coarse sand with Kaolin micro-particle improved nucleation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 290-299. (in Chinese) doi: 10.11779/CJGE202102009
|
[14] |
. XIAO Y, XIAO W T, MA G L, et al. Mechanical performance of biotreated sandy road bases[J]. Journal of Performance of Constructed Facilities, 2022, 36(1): 04021111. doi: 10.1061/(ASCE)CF.1943-5509.0001671
|
[15] |
GOMEZ M G, DEJONG J T, ANDERSON C M. Effect of bio-cementation on geophysical and cone penetration measurements in sands[J]. Canadian Geotechnical Journal, 2018, 55(11): 1632-1646.
|
[16] |
郑志龙, 陈洋, 王丽君, 等. 高密度电法在某高速公路岩溶隧道探测中的应用[J]. 地下空间与工程学报, 2021, 17(增刊2): 912-917, 924.
ZHENG Zhilong, CHEN Yang, WANG Lijun, et al. Application of high density electrical method in Karst tunnel detection of a highway[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S2): 912-917, 924. (in Chinese)
|
[17] |
缪林昌, 严明良, 崔颖. 重塑膨胀土的电阻率特性测试研究[J]. 岩土工程学报, 2007, 29(9): 1413-1417. http://cge.nhri.cn/cn/article/id/12619
MIAO Linchang, YAN Mingliang, CUI Ying. Studies on electrical resistivity of remold expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1413-1417. (in Chinese) http://cge.nhri.cn/cn/article/id/12619
|
[18] |
蔡国军, 张涛, 刘松玉, 等. 江苏海相黏土电阻率与岩土特性参数间相关性研究[J]. 岩土工程学报, 2013, 35(8): 1470-1477. http://cge.nhri.cn/cn/article/id/15255
CAI Guojun, ZHANG Tao, LIU Songyu, et al. Relationship between electrical resistivity and geotechnical characteristic parameters for Jiangsu marine clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1470-1477. (in Chinese) http://cge.nhri.cn/cn/article/id/15255
|
[19] |
章定文, 曹智国, 刘松玉, 等. 水泥固化铅污染土的电阻率特性与经验公式[J]. 岩土工程学报, 2015, 37(9): 1685-1691. doi: 10.11779/CJGE201509017
ZHANG Dingwen, CAO Zhiguo, LIU Songyu, et al. Characteristics and empirical formula of electrical resistivity of cement-solidified lead-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1685-1691. (in Chinese) doi: 10.11779/CJGE201509017
|
[20] |
查甫生, 刘松玉, 杜延军, 等. 基于电阻率法的膨胀土吸水膨胀过程中结构变化定量研究[J]. 岩土工程学报, 2008, 30(12): 1832-1839. doi: 10.3321/j.issn:1000-4548.2008.12.011
ZHA Fusheng, LIU Songyu, DU Yanjun, et al. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.12.011
|
[21] |
刘松玉, 边汉亮, 蔡国军, 等. 油水二相体对油污染土电阻率特性的影响[J]. 岩土工程学报, 2017, 39(1): 170-177. doi: 10.11779/CJGE201701016
LIU Songyu, BIAN Hanliang, CAI Guojun, et al. Influences of water and oil two-phase on electrical resistivity of oil-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 170-177. (in Chinese) doi: 10.11779/CJGE201701016
|
[22] |
马德良, 谢一飞, 冯怀平, 等. 排水过程三轴试样含水率分布演化规律研究[J]. 岩土工程学报, 2022, 44(8): 1425-1433. doi: 10.11779/CJGE202208007
MA Deliang, XIE Yifei, FENG Huaiping, et al. Development of moisture content distribution of triaxial samples during drying process[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1425-1433. (in Chinese) doi: 10.11779/CJGE202208007
|
[23] |
王炳辉, 王志华, 姜朋明, 等. 饱和砂土不同孔隙率的电阻率特性研究[J]. 岩土工程学报, 2017, 39(9): 1739-1745. doi: 10.11779/CJGE201709024
WANG Binghui, WANG Zhihua, JIANG Pengming, et al. Electrical resistivity characteristics of saturated sand with varied porosities[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1739-1745. (in Chinese) doi: 10.11779/CJGE201709024
|
[24] |
张少华, 李熠, 寇晓辉, 等. 水泥固化锌污染土电阻率与强度特性研究[J]. 岩土力学, 2015, 36(10): 2899-2906.
ZHANG Shaohua, LI Yi, KOU Xiaohui, et al. Study of electrical resistivity and strength characteristics of zinc contaminated soil solidified by cement[J]. Rock and Soil Mechanics, 2015, 36(10): 2899-2906. (in Chinese)
|
[25] |
孙潇昊, 缪林昌, 童天志, 等. 微生物固化砂柱效果电阻率评价研究[J]. 岩土工程学报, 2021, 43(3): 579-585. doi: 10.11779/CJGE202103022
SUN Xiaohao, MIAO Linchang, TONG Tianzhi, et al. Cementation effect evaluation of MICP sand solidification via electrical resistivity[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 579-585. (in Chinese) doi: 10.11779/CJGE202103022
|
[26] |
AN N, TANG C S, CHENG Q, et al. Application of electrical resistivity method in the characterization of 2D desiccation cracking process of clayey soil[J]. Engineering Geology, 2020, 265: 105416.
|
[27] |
柯瀚, 胡杰, 吴小雯, 等. 竖井抽水下垃圾填埋场渗滤液运移规律研究[J]. 岩土工程学报, 2018, 40(5): 786-793. doi: 10.11779/CJGE201805002
KE Han, HU Jie, WU Xiaowen, et al. Investigation into leachate transport in MSW landfills under pumping of vertical wells[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 786-793. (in Chinese) doi: 10.11779/CJGE201805002
|
[28] |
中华人民共和国住房与城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2020.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2020. (in Chinese)
|
[29] |
周明园, 王炳辉, 吴迪, 等. 砂土电阻率特性的室内试验研究[J]. 江苏科技大学学报(自然科学版), 2018, 32(1): 134-138.
ZHOU Mingyuan, WANG Binghui, WU Di, et al. Experimental study on sand resistivity characteristics of sand soil[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2018, 32(1): 134-138. (in Chinese)
|
1. |
谭明伦,仝令帅,周鸣亮,张乐,黄宏伟. 数物双驱动的水下隧道围岩稳定性分析. 现代隧道技术. 2024(S1): 183-193 .
![]() |