• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SHI Jinquan, WANG Lei, ZHANG Xuanming, ZHAO Hang, WU Bingyang, ZHAO Hanghang, LIU Hanlong, XIAO Yang. Experimental study on electricity resistivity of MICP-treated calcareous sand foundation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 244-253. DOI: 10.11779/CJGE20221281
Citation: SHI Jinquan, WANG Lei, ZHANG Xuanming, ZHAO Hang, WU Bingyang, ZHAO Hanghang, LIU Hanlong, XIAO Yang. Experimental study on electricity resistivity of MICP-treated calcareous sand foundation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 244-253. DOI: 10.11779/CJGE20221281

Experimental study on electricity resistivity of MICP-treated calcareous sand foundation

More Information
  • Received Date: October 16, 2022
  • Available Online: June 05, 2023
  • The heterogeneity is a technical problem for MICP-reinforced foundation. The electricity resistivity of a MICP-treated calcareous sand foundation is experimentally studied using the selft-developed multichannel measurement equipments. The effects of bacterial solution and cementation solution on the amplitude and variation law of electricity resistivity are investigated. The spatial differences of the MICP treatment effects in the calcareous foundation and the feasibility of using the electricity resistivity to monitor the MICP reaction process are discussed. The test results show that the electricity resistivity of the calcareous foundation is affected by the density, bacterial solution and cementation solution, among which the effects of cementation solution are the most significant. The electricity resistivity firstly increases, then decreases with the increase of MICP treatment times. The deeper soil has lower electricity resistivity than the upper soil. The electricity resistivity increases after the seventh or the eighth treatment. The reason for this phenomenon may be that the pores in the soil are gradually filled by the generated calcium carbonate after the repeated reinforcement, and the ion exchange channels in the soil are reduced, leading to an increase in the resistivity. The influences of calcium carbonate-filled pores on the resistivity are dominant at this time.
  • [1]
    DEJONG J T, SOGA K, KAVAZANJIAN E, et al. Biogeochemical processes and geotechnical applications: progress, opportunities and challenges[J]. Géotechnique, 2013, 63(4): 287-301. doi: 10.1680/geot.SIP13.P.017
    [2]
    AMARAKOON G G N N, KAWASAKI S. Factors affecting sand solidification using MICP with Pararhodobacter sp[J]. Materials Transactions, 2018, 59(1): 72-81. doi: 10.2320/matertrans.M-M2017849
    [3]
    FENG K, MONTOYA B M. Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(1): 04015057. doi: 10.1061/(ASCE)GT.1943-5606.0001379
    [4]
    VAN PAASSEN L A, GHOSE R, VAN DER LINDEN T J M, et al. Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1721-1728. doi: 10.1061/(ASCE)GT.1943-5606.0000382
    [5]
    XIAO Y, ZHANG Z C, STUEDLEIN A W, et al. Liquefaction modeling for biocemented calcareous sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(12): 04021149. doi: 10.1061/(ASCE)GT.1943-5606.0002666
    [6]
    肖鹏, 刘汉龙, 史金权, 等. 微生物加固钙质砂地基动力响应特性研究[J]. 岩土工程学报, 2023, 45(6): 1303-1313.

    XIAO Peng, LIU Hanlong, SHI Jinquan, et al. Dynamic response of calcareous foundation reinforced by microbially induced calcite precipitation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1303-1313. (in Chinese)
    [7]
    CHU J, IVANOV V, STABNIKOV V, et al. Microbial method for construction of an aquaculture pond in sand[J]. Géotechnique, 2013, 63(10): 871-875. doi: 10.1680/geot.SIP13.P.007
    [8]
    XIAO Y, ZHOU W, SHI J Q, et al. Erosion of biotreated field-scale slopes under rainfalls[J]. Journal of Performance of Constructed Facilities, 2022, 36(3): 871-875.
    [9]
    XIAO Y, WANG Y, WANG S, et al. Homogeneity and mechanical behaviors of sands improved by a temperature-controlled one-phase MICP method[J]. Acta Geotechnica, 2021, 16(5): 1417-1427. doi: 10.1007/s11440-020-01122-4
    [10]
    ARPAJIRAKUL S, PUNGRASMI W, LIKITLERSUANG S. Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement[J]. Construction and Building Materials, 2021, 282: 122722. doi: 10.1016/j.conbuildmat.2021.122722
    [11]
    彭劼, 冯清鹏, 孙益成. 温度对微生物诱导碳酸钙沉积加固砂土的影响研究[J]. 岩土工程学报, 2018, 40(6): 1048-1055. doi: 10.11779/CJGE201806010

    PENG Jie, FENG Qingpeng, SUN Yicheng. Influences of temperatures on MICP-treated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1048-1055. (in Chinese) doi: 10.11779/CJGE201806010
    [12]
    尹黎阳, 唐朝生, 谢约翰, 等. 微生物矿化作用改善岩土材料性能的影响因素[J]. 岩土力学, 2019, 40(7): 2525-2546.

    YIN Liyang, TANG Chaosheng, XIE Yuehan, et al. Factors affecting improvement in engineering properties of geomaterials by microbial-induced calcite precipitation[J]. Rock and Soil Mechanics, 2019, 40(7): 2525-2546. (in Chinese)
    [13]
    马国梁, 何想, 路桦铭, 等. 高岭土微粒固载成核微生物固化粗砂强度[J]. 岩土工程学报, 2021, 43(2): 290-299. doi: 10.11779/CJGE202102009

    MA Guoliang, HE Xiang, LU Huaming, et al. Strength of biocemented coarse sand with Kaolin micro-particle improved nucleation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 290-299. (in Chinese) doi: 10.11779/CJGE202102009
    [14]
    . XIAO Y, XIAO W T, MA G L, et al. Mechanical performance of biotreated sandy road bases[J]. Journal of Performance of Constructed Facilities, 2022, 36(1): 04021111. doi: 10.1061/(ASCE)CF.1943-5509.0001671
    [15]
    GOMEZ M G, DEJONG J T, ANDERSON C M. Effect of bio-cementation on geophysical and cone penetration measurements in sands[J]. Canadian Geotechnical Journal, 2018, 55(11): 1632-1646.
    [16]
    郑志龙, 陈洋, 王丽君, 等. 高密度电法在某高速公路岩溶隧道探测中的应用[J]. 地下空间与工程学报, 2021, 17(增刊2): 912-917, 924.

    ZHENG Zhilong, CHEN Yang, WANG Lijun, et al. Application of high density electrical method in Karst tunnel detection of a highway[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S2): 912-917, 924. (in Chinese)
    [17]
    缪林昌, 严明良, 崔颖. 重塑膨胀土的电阻率特性测试研究[J]. 岩土工程学报, 2007, 29(9): 1413-1417. http://cge.nhri.cn/cn/article/id/12619

    MIAO Linchang, YAN Mingliang, CUI Ying. Studies on electrical resistivity of remold expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1413-1417. (in Chinese) http://cge.nhri.cn/cn/article/id/12619
    [18]
    蔡国军, 张涛, 刘松玉, 等. 江苏海相黏土电阻率与岩土特性参数间相关性研究[J]. 岩土工程学报, 2013, 35(8): 1470-1477. http://cge.nhri.cn/cn/article/id/15255

    CAI Guojun, ZHANG Tao, LIU Songyu, et al. Relationship between electrical resistivity and geotechnical characteristic parameters for Jiangsu marine clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1470-1477. (in Chinese) http://cge.nhri.cn/cn/article/id/15255
    [19]
    章定文, 曹智国, 刘松玉, 等. 水泥固化铅污染土的电阻率特性与经验公式[J]. 岩土工程学报, 2015, 37(9): 1685-1691. doi: 10.11779/CJGE201509017

    ZHANG Dingwen, CAO Zhiguo, LIU Songyu, et al. Characteristics and empirical formula of electrical resistivity of cement-solidified lead-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1685-1691. (in Chinese) doi: 10.11779/CJGE201509017
    [20]
    查甫生, 刘松玉, 杜延军, 等. 基于电阻率法的膨胀土吸水膨胀过程中结构变化定量研究[J]. 岩土工程学报, 2008, 30(12): 1832-1839. doi: 10.3321/j.issn:1000-4548.2008.12.011

    ZHA Fusheng, LIU Songyu, DU Yanjun, et al. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.12.011
    [21]
    刘松玉, 边汉亮, 蔡国军, 等. 油水二相体对油污染土电阻率特性的影响[J]. 岩土工程学报, 2017, 39(1): 170-177. doi: 10.11779/CJGE201701016

    LIU Songyu, BIAN Hanliang, CAI Guojun, et al. Influences of water and oil two-phase on electrical resistivity of oil-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 170-177. (in Chinese) doi: 10.11779/CJGE201701016
    [22]
    马德良, 谢一飞, 冯怀平, 等. 排水过程三轴试样含水率分布演化规律研究[J]. 岩土工程学报, 2022, 44(8): 1425-1433. doi: 10.11779/CJGE202208007

    MA Deliang, XIE Yifei, FENG Huaiping, et al. Development of moisture content distribution of triaxial samples during drying process[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1425-1433. (in Chinese) doi: 10.11779/CJGE202208007
    [23]
    王炳辉, 王志华, 姜朋明, 等. 饱和砂土不同孔隙率的电阻率特性研究[J]. 岩土工程学报, 2017, 39(9): 1739-1745. doi: 10.11779/CJGE201709024

    WANG Binghui, WANG Zhihua, JIANG Pengming, et al. Electrical resistivity characteristics of saturated sand with varied porosities[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1739-1745. (in Chinese) doi: 10.11779/CJGE201709024
    [24]
    张少华, 李熠, 寇晓辉, 等. 水泥固化锌污染土电阻率与强度特性研究[J]. 岩土力学, 2015, 36(10): 2899-2906.

    ZHANG Shaohua, LI Yi, KOU Xiaohui, et al. Study of electrical resistivity and strength characteristics of zinc contaminated soil solidified by cement[J]. Rock and Soil Mechanics, 2015, 36(10): 2899-2906. (in Chinese)
    [25]
    孙潇昊, 缪林昌, 童天志, 等. 微生物固化砂柱效果电阻率评价研究[J]. 岩土工程学报, 2021, 43(3): 579-585. doi: 10.11779/CJGE202103022

    SUN Xiaohao, MIAO Linchang, TONG Tianzhi, et al. Cementation effect evaluation of MICP sand solidification via electrical resistivity[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 579-585. (in Chinese) doi: 10.11779/CJGE202103022
    [26]
    AN N, TANG C S, CHENG Q, et al. Application of electrical resistivity method in the characterization of 2D desiccation cracking process of clayey soil[J]. Engineering Geology, 2020, 265: 105416.
    [27]
    柯瀚, 胡杰, 吴小雯, 等. 竖井抽水下垃圾填埋场渗滤液运移规律研究[J]. 岩土工程学报, 2018, 40(5): 786-793. doi: 10.11779/CJGE201805002

    KE Han, HU Jie, WU Xiaowen, et al. Investigation into leachate transport in MSW landfills under pumping of vertical wells[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 786-793. (in Chinese) doi: 10.11779/CJGE201805002
    [28]
    中华人民共和国住房与城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2020.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2020. (in Chinese)
    [29]
    周明园, 王炳辉, 吴迪, 等. 砂土电阻率特性的室内试验研究[J]. 江苏科技大学学报(自然科学版), 2018, 32(1): 134-138.

    ZHOU Mingyuan, WANG Binghui, WU Di, et al. Experimental study on sand resistivity characteristics of sand soil[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2018, 32(1): 134-138. (in Chinese)
  • Cited by

    Periodical cited type(1)

    1. 谭明伦,仝令帅,周鸣亮,张乐,黄宏伟. 数物双驱动的水下隧道围岩稳定性分析. 现代隧道技术. 2024(S1): 183-193 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return