• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
BIAN Shi-hai, LI Guo-ying, WEI Kuang-min, ZHOU Jian. Modified generalized plasticity model for rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1936-1942. DOI: 10.11779/CJGE201710024
Citation: BIAN Shi-hai, LI Guo-ying, WEI Kuang-min, ZHOU Jian. Modified generalized plasticity model for rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1936-1942. DOI: 10.11779/CJGE201710024

Modified generalized plasticity model for rockfill materials

More Information
  • Received Date: December 11, 2016
  • Published Date: October 24, 2017
  • Within the framework of generalized plasticity theory, the plastic modulus is modified by adding two correction factors to enhance the adaptability of model under high confining stress, thus the generalized plasticity model for sand is successfully transformed into the model for rockfill materials. The modified P-Z model has fewer parameters, all of which can be easily determined, and it is relatively practical and can be extended into a state-dependent constitutive model. The expression for plastic modulus is simple and can be degenerated to that for isotropic compression tests. The modified model can well simulate the stress-strain behaviours of rockfill materials of triaxial tests and can aslo capture the stress-strain features under other stress paths.
  • [1]
    DUNCAN J M, CHANG C Y. Nonlinear analysis of stress and strain in soils[J]. Asce Soil Mechanics & Foundation Division Journal, 1970, 96(5): 1629-1653.
    [2]
    沈珠江. 土体应力应变分析的一种新模型[C]// 第五届土力学及基础工程学术讨论会论文集. 北京, 1990: 101-105. (SHEN Zhu-jiang. A new constitutive model for soils[C]// Proceedings of the 5th Chinese Conference on Soil Mechanics and Foundation Engineering. Beijing, 1990: 101-105. (in Chinese))
    [3]
    HARDIN B O, DRNEVICH V P. Shear modulus and damping in soil: measurement and parameter effects[J]. Journal of the Soil Mechanics and Foundations, ASCE, 1972(7): 667-692.
    [4]
    HARDIN B O, DRNEVICH V P. Shear modulus and damping in soil: design equation and curves[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1972, 6: 603-624.
    [5]
    沈珠江, 徐 刚. 堆石料的动力变形特性[J]. 水利水运科学研究, 1996, 6(2): 143-150. (SHEN Zhu-jiang, XU Gang. Deformation behavior of rock material under cyclicloading[J]. Hydro-Science and Engineering, 1996, 6(2): 143-150. (in Chinese))
    [6]
    XU B, ZOU D, LIU H. Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model[J]. Computers & Geotechnics, 2012, 43(6): 143-154.
    [7]
    ZOU De-gao, XU Bin, Kong Xian-jing, et al. Numerical simulation of the seismic response of the Zipingpu concrete face rockfill dam during the Wenchuan earthquake based on a generalized plasticity model[J]. Computers & Geotechnics, 2013, 49(4): 111-122.
    [8]
    ZIENKIEWICZ O C, MROZ Z. Generalized plasticity formulation and applications to geomechanics[C]// Mechanics of Engineering Materials. New York, 1984: 655-679.
    [9]
    PASTOR M., ZIENKIEWICZ O C, CHAN A H C. Generalized plasticity and the modeling of soil behavior[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14: 151-190.
    [10]
    卞士海, 李国英, 魏匡民, 等. 堆石料广义塑性模型研究[J]. 岩土工程学报, 2017, 39(6): 996-1003. (BIAN Shi-hai, LI Guo-ying, WEI Kuang-min, et al. Study on generalized plasticity model of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 996-1003. (in Chinese))
    [11]
    WEI K M, ZHU S. A generalized plasticity model to predict behaviors of the concrete-faced rock-fill dam under complex loading conditions[J]. European Journal of Environmental and Civil Engineering, 2013, 17(7): 579-597.
    [12]
    朱 晟, 魏匡民, 林道通. 筑坝土石料的统一广义塑性本构模[J]. 岩土工程学报, 2014, 36(8): 1394-1399. (ZHU Sheng, WEI Kuang-min, LIN Dao-tong. Generalized plasticity model for soil and coarse-grained dam materials[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1394-1399. (in Chinese))
    [13]
    陈生水, 傅中志, 韩华强. 一个考虑颗粒破碎的堆石料弹塑性本构模型[J]. 岩土工程学报, 2011, 33(10): 1489-1495. (CHEN Sheng-shui, FU Zhong-zhi, HAN Hua-qiang. An elastoplastic model for rockfill materials considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1489-1495. (in Chinese))
    [14]
    YAO Y P, YAMAMOTO H, WANG N D. Constitutive model considering sand crushing[J]. Soils and Foundations, 2008, 48(4): 603-608.
    [15]
    邹德高, 付 猛, 刘京茂, 等. 粗粒料广义塑性模型对不同应力路径适应性研究[J]. 大连理工大学学报, 2013, 53(5): 702-709. (ZOU De-gao, FU Meng, LIU Jing-mao, et al. Study of adaptability of generalized plastic model of coarse grained soil under various stress paths[J]. Journal of Dalian University of Technology, 2013, 53(5): 702-709. (in Chinese))
    [16]
    LING H I, YANG S. Unified sand model based on the critical state and generalized plasticity[J]. J Eng Mech, 2006, 132(12): 1380-1391.
    [17]
    刘恩龙, 陈生水, 李国英, 等. 堆石料的临界状态与考虑颗粒破碎的本构模型[J]. 岩土力学, 2011, 32(增刊2): 148-154. (LIU En-long, CHEN Sheng-shui, LI Guo-ying, et al. Critical state of rockfill materials and a constitutive model considering grain crushing[J]. Rock and Soil Mechanics, 2011, 32(S2): 148-154. (in Chinese))
    [18]
    杨 光, 孙 逊, 于玉贞, 等. 不同应力路径下粗粒料力学特性试验研究[J]. 岩土力学, 2010, 31(4): 1118-1122. (YANG Guang, SUN Xun, YU Yu-zhen, et al. Experimental study of mechanical behavior of a coarse-grained material under various stress paths[J]. Rock and Soil Mechanics, 2010, 31(4): 1118-1122. (in Chinese))
    [19]
    朱 晟, 王永明, 胡祥群. 免疫遗传算法在土石坝筑坝粗粒料本构模型参数反演中的应用研究[J]. 岩土力学, 2010, 31(3): 961-966. (ZHU Sheng, WANG Yong-ming, HU Xiang-qun. Application of immune genetic algorithm to back analysis for parameters in model of rockfill dam coarse grain materials[J]. Rock and Soil Mechanics, 2010, 31(3): 961-966. (in Chinese))
    [20]
    张林洪, 刘荣佩, 谢婉丽. 等应力比路径条件下堆石料的应力应变特性[J]. 大坝观测与土工测试, 2001, 25(4): 46-49. (ZHANG Lin-hong, LIU Rong-pei, XIE Wan-li. Properties of stress and strain of rockfill under the path of equal stress ratio[J]. Dam Observation and Geotechnical Tests, 2001, 25(4): 46-49. (in Chinese))
    [21]
    张如林. 模拟大坝实际应力路径下堆石本构模型关系研究[D]. 大连: 大连理工大学, 2008. (ZHANG Ru-lin. Study on constitutive relationship of rockfill under simulating actual stress path of dam[D]. Dalian: Dalian University of Technology, 2008. (in Chinese))
    [22]
    相 彪. 筑坝堆石料应力路径本构关系研究[D]. 大连: 大连理工大学, 2009. (XIANG Biao. Study on constitutive relations of dam rockfill considering the effect of stress[D]. Dalian: Dalian University of Technology, 2009. (in Chinese))
    [23]
    中国水利水电科学研究院. 三板溪混凝土面板堆石坝坝料试验报告[R]. 北京: 中国水利水电科学研究院, 2002. (China Institute of Water Resources and Hydropower Research. The test report on the material of the CFRD in Sanbanxi [R]. Beijing: China Institute of Water Resources and Hydropower Research, 2002. (in Chinese))
    [24]
    XIAO Y, LIU H, CHEN Y, et al. State-dependent constitutive model for rockfill materials[J]. Int J Geomech, 2015: 04014075
    [25]
    LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-60.
    [26]
    贾 华. 粗粒土加载与回弹特性试验及邓肯模型适用性研究[D]. 南京: 河海大学, 2009. (JIA Hua. Study of loading and unloading properties of coarse-grained soils and adaptability of Duncan-Chang model[D]. Nanjing: Hohai University, 2009. (in Chinese))
  • Related Articles

    [1]LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228
    [2]JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022
    [3]XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
    [4]HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
    [5]ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021
    [6]HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019
    [7]LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895.
    [8]LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648.
    [9]Microcosmic mechanism of ion transport in charged clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1794-1799.
    [10]XI Yong, Hui, REN Jie. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return